基于TextRank算法的文本摘要生成

本文介绍如何利用Python实现基于TextRank算法的文本摘要生成。通过数据预处理、构建图模型、运行TextRank算法计算句子重要性和生成摘要的步骤,详细展示了TextRank在文本摘要中的应用。
摘要由CSDN通过智能技术生成

TextRank是一种常用的无监督文本摘要生成算法,它基于图论和PageRank算法的思想,通过计算文本中句子之间的相似度,找出关键句子来生成摘要。在本文中,我们将使用Python来实现基于TextRank算法的文本摘要生成,并提供相应的代码和数据,以便您可以直接运行。

  1. 数据预处理
    首先,我们需要对要进行摘要生成的文本进行预处理。我们将使用nltk库来进行文本分词和句子分割。如果您还没有安装nltk库,可以使用以下命令进行安装:
pip install nltk

以下是对文本进行预处理的代码示例:

import nltk
from nltk.tokenize import sent_tokenize, word_tokenize

nltk.download(
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值