Generalized Focal Loss:Focal loss魔改以及预测框概率分布,保涨点 | NeurIPS 2020

为了高效地学习准确的预测框及其分布,论文对Focal loss进行拓展,提出了能够优化连续值目标的Generalized Focal loss,包含Quality Focal loss和Distribution Focal loss两种具体形式。QFL用于学习更好的分类分数和定位质量的联合表示,DFL通过对预测框位置进行general分布建模来提供更多的信息以及准确的预测。从实验结果来看,GFL能够所有one-stage检测算法的性能

来源:晓飞的算法工程笔记 公众号

论文: Generalized Focal Loss: Learning Qualified and Distributed Bounding Boxes for Dense Object Detection

Introduction


  目前,dense detector(one-stage)是目标检测中的主流方向,论文主要讨论其中的两个做法:

  • 预测框的表示方法(representation):可认为是网络对预测框位置的输出,常规方法将其建模为简单的Dirac delta分布,即直接输出位置结果。而有的方法将其建模为高斯分布,输出均值和方差,分别表示位置结果和位置结果的不确定性,提供额外的信息。

  • 定位质量估计:最近一些研究增加了额外的定位质量预测,比如IoU-Net加入了IoU分数的预测和FCOS加入了centerness分数的预测,最后将定位质量以及分类分数合并为最终分数。

  经过分析,论文发现上述的两个做法存在以下问题:

  • 定位质量估计和分类分数实际不兼容:首先,定位质量估计和分类分数通常是独立训练的,但在推理时却合并使用。其次,定位质量估计只使用正样本点进行训练,导致负样本点可能估计了高定位质量,这种训练和测试的差异会降低检测的性能。
  • 预测框表示方法不够灵活:大多算法将其建模为Dirac delta分布,这种做法没有考虑数据集中的歧义和不确定部分,只知道结果,不知道这个结果靠不靠谱。虽然有的方法将其建模为高斯分布,但高斯分布太简单粗暴了,不能反映预测框的真实分布。

  为了解决上面的两个问题,论文分别提出了解决的策略:

  • 对于定位质量估计,论文将其直接与分类分数进行合并,保留类别向量,每个类别的分数的含义变为与GT的IoU。另外,使用这种方式能够同时对正负样本进行训练,不会再有训练和测试的差异。

  • 对于预测框的表示方法,使用general的分布进行建模,不再强加任何的约束,不仅能够获得可靠和准确的预测结果,还能感知其潜在的真实分布情况。如上图所示,对于存在歧义或不确定的边界,其分布会表现为较平滑的曲线,否则,其分布会表示为尖锐的曲线。

  实际上,使用上述提到的两种策略会面临优化的问题。在常规的one-stage检测算法中,分类分支都使用Focal loss进行优化,而Focal loss主要针对离散的分类标签。在论文将定位质量与分类分数结合后,其输出变为类别相关的连续的IoU分数,不能直接使用Focal loss。所以论文对Focal loss进行拓展,提出了GFL(Generalized Focal Los),能够处理连续值目标的全局优化问题。GFL包含QFL(Quality Focal Los)和DFL( Distribution Focal Los)两种具体形式,QFL用于优化难样本同时预测对应类别的连续值分数,而DFL则通过对预测框位置进行general分布的建模来提供更多的信息以及准确的位置预测。
  总体而言,GFL有以下优点:

  • 消除额外的质量估计分支在训练和测试时的差异,提出简单且高效的联合预测策略。
  • 很好地对预测框的真实分布进行灵活建模,提供更多的信息以及准确的位置预测。
  • 在引入额外开销的情况下,能够提升所有one-stage检测算法的性能。

Method


Focal Loss (FL)

  FL主要用于解决one-stage目标检测算法中的正负样本不平衡问题:

  包含标准的交叉熵部分 − l o g ( p t ) -log(p_t) log(pt)以及缩放因子部分 ( 1 − p t ) γ (1-p_t)^{\gamma} (1pt)γ,缩放因子会自动将容易样本降权,让训练集中于难样本。

Quality Focal Loss (QFL)

  由于FL仅支持离散标签,为了将其思想应用到分类与定位质量结合的连续标签,对其进行了扩展。首先将交叉熵部分 − l o g ( p t ) -log(p_t) log(pt)扩展为完整形式 − ( ( 1 − y ) l o g ( 1 − σ ) + y   l o g ( σ ) ) -((1-y)log(1-\sigma) + y\ log(\sigma)) ((1y)log(1σ)+y log(σ)),其次将缩放因子 ( 1 − p t ) γ (1-p_t)^{\gamma} (1pt)γ泛化为预测值 σ \sigma σ与连续标签 y y y的绝对差值 ∣ y − σ ∣ β |y-\sigma|^{\beta} yσβ,将其组合得到QFL:

σ = y \sigma=y σ=y为QFL的全局最小解。

  缩放因子的超参数 β \beta β用于控制降权的速率,表现如上图所示,假定目标连续标签 y = 0.5 y=0.5 y=0.5,距离标签越远产生的权重越大,反之则趋向于0,跟FL类似。

Distribution Focal Loss (DFL)

  论文跟其它one-stage检测算法一样,将当前位置到目标边界的距离作为回归目标。常规的方法将回归目标 y y y建模为Dirac delta分布,Dirac delta分布满足 ∫ − ∞ + ∞ δ ( x − y ) d x = 1 \int^{+\infty}_{-\infty}\delta(x-y)dx=1 +δ(xy)dx=1,可通过积分的形式求得标签 y y y

  如前面说到的,这种方法没有体现预测框的真实分布,不能提供更多的信息,所以论文打算将其表示为general的分布 P ( x ) P(x) P(x)。给定标签 y y y的取值范围 [ y 0 , y n ] [y_0, y_n] [y0,yn],可像Dirac delta分布那样从建模的genreal分布得到预测值 y ^ \hat{y} y^

  为了与神经网络兼容,将连续区域 [ y 0 , y n ] [y_0, y_n] [y0,yn]的积分变为离散区域 { y 0 , y 1 , ⋯   , y i , y i + 1 , ⋯   , y n − 1 , y n } \{y_0, y_1, \cdots, y_i, y_{i+1}, \cdots, y_{n-1}, y_n \} {y0,y1,,yi,yi+1,,yn1,yn}的积分,离散区域的间隔 Δ = 1 \Delta=1 Δ=1,预测值 y ^ \hat{y} y^可表示为:

P ( x ) P(x) P(x)可通过softmax操作 S ( ⋅ ) \mathcal{S}(\cdot) S()获得,标记为 S i \mathcal{S}_i Si,预测值 y ^ \hat{y} y^可使用常规的方法进行后续的end-to-end学习,比如Smooth L1、IoU loss和GIoU Loss。

  但实际上,同一个积分结果 y y y可由多种不同分布所得,会降低网络学习的效率。考虑到更多的分布应该集中于回归目标 y y y的附近,论文提出DFL来强制网络提高最接近 y y y y i y_i yi y i + 1 y_{i+1} yi+1的概率,由于回归预测不涉及正负样本不平衡的问题,所以DFL仅需要交叉熵部分:

  DFL的全局最优解为 S i = y i + 1 − y y i + 1 − y i \mathcal{S}_i=\frac{y_{i+1}-y}{y_{i+1}-y_i} Si=yi+1yiyi+1y S i + 1 = y − y i y i + 1 − y i \mathcal{S}_{i+1}=\frac{y - y_i}{y_{i+1}-y_i} Si+1=yi+1yiyyi,使得 y ^ \hat{y} y^无限接近于标签 y y y

Generalized Focal Loss (GFL)

  QFL和DFL可统一地表示为GFL,假定值 y l y_l yl y r y_r yr的预测概率分别为 p y l p_{y_l} pyl p y r p_{y_r} pyr,最终的预测结果为 y ^ = y l p y l + y r p y r \hat{y}=y_l p_{y_l}+y_r p_{y_r} y^=ylpyl+yrpyr,GT标签为 y y y,满足 y l ≤ y ≤ y r y_l \le y \le y_r ylyyr,将 ∣ y − y ^ ∣ β |y-\hat{y}|^{\beta} yy^β作为缩放因子,GFL的公式为:

  GFL的全局最优在 p y l ∗ = y r − y y r − y l p^{*}_{y_l}=\frac{y_r-y}{y_r-y_l} pyl=yrylyry p y r ∗ = y − y l y r − y l p^{*}_{y_r}=\frac{y-y_l}{y_r-y_l} pyr=yrylyyl

  FL、QFL和DFL均可认为是GFL的特殊情况。使用GFL后,与原来的方法相比有以下不同:

  • 分类分支的输出直接用于NMS,不用再进行两分支输出合并的操作
  • 回归分支对预测框的每个位置的预测,从原来的输出单个值变为输出 n + 1 n+1 n+1个值

  在使用GFL后,网络损失 L \mathcal{L} L变为:

L B \mathcal{L}_{\mathcal{B}} LB为GIoU损失

Experiment


  性能对比。

  对比实验。

  基于ATSS与SOTA算法进行对比。

Conclusion


  为了高效地学习准确的预测框及其分布,论文对Focal loss进行拓展,提出了能够优化连续值目标的Generalized Focal loss,包含Quality Focal loss和Distribution Focal loss两种具体形式。QFL用于学习更好的分类分数和定位质量的联合表示,DFL通过对预测框位置进行general分布建模来提供更多的信息以及准确的预测。从实验结果来看,GFL能够所有one-stage检测算法的性能。



如果本文对你有帮助,麻烦点个赞或在看呗~
更多内容请关注 微信公众号【晓飞的算法工程笔记】

work-life balance.

  • 0
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Generalized Focal Loss是一种处理不平衡数据集的损失函数,它在传统的Focal Loss上进行了改进,可以用于多分类和回归任务。YoloV5是一种目标检测算法,它采用一种基于单个神经网络的方法来实现快速而准确的目标检测。结合使用Generalized Focal Loss和YoloV5可以进一步提升目标检测的性能。 在目标检测任务中,不同类别的样本数量往往是不平衡的,一些常见的类别可能有很多样本,而一些罕见的类别可能只有极少数样本。对于这种情况,使用传统的交叉熵损失函数可能导致网络偏向于训练样本数量较多的类别,而对于那些样本数量较少的类别则表现不佳。 Generalized Focal Loss采用了类似于Focal Loss的方法来处理不平衡数据集,该方法通过降低容易分类的样本的权重来提高难以分类的样本在训练过程中的重要性。此外,Generalized Focal Loss还添加了一些参数来控制样本难度的权重,这提高了模型对于罕见类别的识别能力。 结合Generalized Focal Loss和YoloV5可以进一步提高目标检测性能。YoloV5现有的版本已经使用Focal Loss来处理类别不平衡的问题,但使用Generalized Focal Loss可以更加灵活地进行参数调节。通过用Generalized Focal Loss替换原有的损失函数,可以减少误分类样本的影响,提高整个模型对于样本数量较少的类别的识别能力,从而进一步提高整个目标检测系统的性能。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值