基于energy score的out-of-distribution数据检测,LeCun都说好 | NerulPS 2020

 论文提出用于out-of-distributions输入检测的energy-based方案,通过非概率的energy score区分in-distribution数据和out-of-distribution数据。不同于softmax置信度,energy score能够对齐输入数据的密度,提升OOD检测的准确率,对算法的实际应用有很大的意义

来源:晓飞的算法工程笔记 公众号

论文: Energy-based Out-of-distribution Detection

Introduction


 今天给大家分享一篇基于能量函数来区分非训练集相关(Out-of-distribution, OOD)输入的文章,连LeCun看了都说好。虽然文章是2020年的,但里面的内容对算法实际应用比较有用。这篇文章提出的能量模型想法在之前分享的《OWOD:开放世界目标检测,更贴近现实的检测场景 | CVPR 2021 Oral》也有应用,有兴趣的可以去看看。
 现实世界是开放且未知的,OOD由于与训练集差异很大,使用通过特定训练集训练出来的模型进行预测的话,往往会出现不可控的结果。因此,确定输入是否为OOD并过滤掉,对算法在高安全要求场景下的应用是十分重要的。
 大部分OOD研究依赖softmax置信度来过滤OOD输入,将低置信度的认定为OOD。然而,由于网络通常已经过拟合了输入空间,softmax对跟训练集差异较大的输入时常会不稳定地返回高置信度,所以softmax并不是OOD检测的最佳方法。还有部分OOD研究则从生成模型的角度来产生输入的似然分数 l o g p ( x ) logp(x) logp(x),但这种方法在实践中难以实现而且很不稳定,因为需要估计整个输入空间的归一化密度。
 为此,论文提出energy-based方法来检测OOD输入,将输入映射为energy score,能直接应用到当前的网络中。论文还提供了理论证明和实验验证,表明这种energy-based方法比softmax-based和generative-based方法更优。

Background: Energy-based Models


 EBM(energy-based model)的核心是建立一个函数 E ( x ) : R D → R E(x): \mathbb{R}^D\to\mathbb{R} E(x):RDR,将输入 x x x映射为一个叫energy的常量。
 一组energy常量可以通过Gibbs分布转为概率分布 p ( x ) p(x) p(x)

 这里将 ( x , y ) (x,y) (x,y)作为输入,对于分类场景, E ( x , y ) E(x,y) E(x,y)可认为是数据与标签相关的energy常量。分母 ∫ y ′ e − E ( x , y ′ ) / T \int_{y^{'}}e^{-E(x,y^{'})/T} yeE(x,y)/T是配分函数,即所有标签energy的整合, T T T是温度系数。
 输入数据 x ∈ R D x\in\mathbb{R}^D xRD的Helmholtz free energy E ( x ) E(x) E(x)可表示为配分函数的负对数:

 结合公式1和公式2就构建了一个跟分类模型十分类似的EBM,可以通过Gibbs分布将多个energy输出转换为概率输出,还可以通过Helmholtz free energy得出最终的energy。
 对于分类模型,分类器 f ( x ) : R D → R K f(x):\mathbb{R}^D\to\mathbb{R}^K f(x):RDRK将输入映射为K个值(logits),随后通过softmax函数将其转换为类别分布:

 其中 f y ( x ) f_y(x) fy(x) f ( x ) f(x) f(x)的第 y y y个输出。

 通过关联公式1和公式3,可在不改动网络 f ( x ) f(x) f(x)的情况下将分类网络转换为EBM。定义输入 ( x , y ) (x,y) (x,y)的energy为softmax的对应输入值 E ( x , y ) = − f y ( x ) E(x,y)=-f_y(x) E(x,y)=fy(x),再定义 x ∈ R D x\in\mathbb{R}^D xRD的free energy为:

Energy-based Out-of-distribution Detection


Energy as Inference-time OOD Score

 Out-of-distribution detection是个二分类问题,评价函数需要产生一个能够判定ID(in-distribution)数据和OOD(out-of-distribution)数据的分数。因此,论文尝试在分类模型上接入energy函数,通过energy进行OOD检测。energy较小的为ID数据,energy较大的为OOD数据。
 实际上,通过负对数似然(negative log-likelihood,NLL))损失训练的模型本身就倾向于拉低ID数据的energy,负对数似然损失可表示为:

 定义energy函数 E ( x , y ) = − f y ( x ) E(x,y)=-f_y(x) E(x,y)=fy(x)并将 l o g log log里面的分数展开,NLL损失可转换为:

 从损失值越低越好的优化角度看,公式6的第一项倾向于拉低目标类别 y y y的energy,而公式6第二项从形式来看相当于输入数据的free energy。第二项导致整体损失函数倾向于拉低目标类别 y y y的energy,同时拉高其它标签的energy,可以从梯度的角度进行解释:

 上述式子是对两项的梯度进行整合,分为目标类别相关的梯度和非目标相关的梯度。可以看到,目标类别相关的梯度是倾向于更小的energy,而非目标类别相关的梯度由于前面有负号,所以是倾向于更大的energy。另外,由于energy近似为 − f y ( x ) = E ( x , y ) -f_y(x)=E(x,y) fy(x)=E(x,y),通常都是目标类别的值比较大,所以NLL损失整体倾向于拉低ID数据的energy。

 由于上述的energy特性,就可以基于energy函数 E ( x ; f ) E(x;f) E(x;f)进行OOD检测:

 其中 τ \tau τ为energy阈值,energy高于该阈值的被认定为OOD数据。在实际测试中,使用ID数据计算阈值,保证大部分的训练数据能被 g ( x ) g(x) g(x)正确地区分。另外,需要注意的是,这里用了负energy分数 − E ( x ; f ) -E(x;f) E(x;f),是为了遵循正样本有更高分数的常规定义。

Energy Score vs. Softmax Score

 论文先通过公式推导,来证明energy可以简单又高效地在任意训练好的模型上代替softmax置信度。将sofmax置信度进行对数展开,结合公式4以及 T = 1 T=1 T=1进行符号转换:

 从上述式子可以看出,softmax置信度的对数实际上是free energy的特例,先将每个energy减去最大的energy进行偏移(shift),再进行free energy的计算,导致置信度与输入的概率密度不匹配。随着训练的进行,通常 f m a x ( x ) f^{max}(x) fmax(x)会变高,而 E ( x ; f ) E(x; f) E(x;f)则变低,所以softmax是有偏评价函数,置信度也不适用于OOD检测。

 论文也通过真实的例子来进行对比,ID数据和OOD数据的softmax置信度差别很小(1.0 vs 0.99),而负energy则更有区分度(11.19 vs. 7.11)。因此,网络输出的值(energy)比偏移后的值(softmax score)包含更多有用的信息。

Energy-bounded Learning for OOD Detection

 尽管energy score能够直接应用于训练好的模型,但ID数据和OOD数据的区分度可能还不够明显。为此,论文提出energy-bounded学习目标,对训练好的网络进行fine-tuned训练,显示地扩大ID数据和OOD数据之间的energy差异:

F ( x ) F(x) F(x)为softmax输出, D i n t r a i n D^{train}_{in} Dintrain为ID数据。整体的训练目标包含标准交叉熵损失,以及基于energy的正则损失:

D o u t t r a i n D^{train}_{out} Douttrain为无标签的辅助OOD数据集,通过两个平方hinge损失对energy进行正则化,惩罚energy大于间隔参数 m i n m_{in} min的ID数据以及energy小于间隔参数 m o u t m_{out} mout的OOD数据。当模型fine-tuned好后,即可根据公式7进行OOD检测。

Experiment


 ID数据集包含CIFA-10、CIFAR-100,并且分割训练集和测试集。OOD测试数据集包含Textures、SVHN、Places365、LSUN-Crop、LSUN_Resize和iSUN。辅助用的OOD数据集则采用80 Million Tiny Images,去掉CIFAR里面出现的类别。
 评价指标采用以下:1)在ID数据95%正确的 τ \tau τ阈值下的OOD数据错误率。2)ROC曲线下的区域大小(AUROC)。3)PR曲线下的区域大小(AUPR)。

 从结果可以看出,energy score比softmax score的表现要好,而经过fine-tuned之后,错误就很低了。

 与其他OOD方法进行比较。

 可视化对比。

Conclustion


 论文提出用于out-of-distributions输入检测的energy-based方案,通过非概率的energy score区分in-distribution数据和out-of-distribution数据。不同于softmax置信度,energy score能够对齐输入数据的密度,提升OOD检测的准确率,对算法的实际应用有很大的意义。



如果本文对你有帮助,麻烦点个赞或在看呗~
更多内容请关注 微信公众号【晓飞的算法工程笔记】

work-life balance.

  • 27
    点赞
  • 29
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
要提取t10k-images-idx3-ubyte数据,你可以按照以下步骤进行操作: 1. 下载MNIST数据集:首先,你需要从MNIST官方网站下载t10k-images-idx3-ubyte文件。你可以在http://yann.lecun.com/exdb/mnist/ 找到MNIST数据集。 2. 打开文件:使用合适的编程语言(如Python)打开t10k-images-idx3-ubyte文件。你可以使用`open()`函数来打开文件。 3. 解析文件头:读取文件的前16个字节,这些字节包含文件的元信息,例如魔数、图像数量、图像的高度和宽度等信息。 4. 读取图像数据:根据文件头中的信息,确定每个图像的大小,并读取相应数量的字节数据。每个图像都是以像素值的形式存储的。 5. 处理图像数据:根据需要,你可以将图像数据转换为适当的格式(如numpy数组)进行进一步处理或分析。 下面是一个Python示例代码,展示了如何提取MNIST数据集中的图像数据: ```python import struct import numpy as np # 打开文件 file_path = 'path/to/t10k-images-idx3-ubyte' with open(file_path, 'rb') as f: # 解析文件头 magic_number, num_images, num_rows, num_cols = struct.unpack('>IIII', f.read(16)) # 读取图像数据 image_data = np.frombuffer(f.read(), dtype=np.uint8) # 处理图像数据 image_data = image_data.reshape(num_images, num_rows, num_cols) # 打印第一张图像的像素值 print(image_data[0]) ``` 请注意,这只是一个示例代码,你需要根据自己的需求进行适当的修改和扩展。另外,确保替换`file_path`为你自己的文件路径。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值