1.dp思想:复杂度O(n^2)
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=1e6+5;
int a[N],f[N];
int d[N];//d[i]用于记录a[0...i]的最大长度
//最大非降子序列
int bsearch(const int *f,int size,const int &a){
int l=0,r=size-1;
while(l<=r){
int mid=(l+r)/2;
if(a>=f[mid-1]&&a<f[mid]) // >=&&< 换为 >&&<=
return mid;
else if(a<=f[mid]) // <= 换为 <
r=mid-1;
else
l=mid+1;
}
}
int LIS(const int *a,const int &n){
f[0]=a[0];
d[0]=1;
int size=1,j;
for(int i=1;i<n;i++){
if(a[i]<f[0]) // < 为 <=
int j=0;
else if(a[i]>=f[size-1]) // >= 换为 >
j=size++;
f[j]=a[i];
d[i]=j+1;
}
return size;
}
//若要求最大递增子序列,只需把注释部分替换掉即可
2.二分思想:复杂度O(nlogn)
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=1e6+5;
const int inf=1<<30;
int a[N]; //输入序列
int d[N]; //d[k] 记录前i个数中的长度为k的所有子序列中最后一位最小的值,b数组一定有序
int LNDS(int n){
for(int i=0;i<=n+1;i++)
d[i]=inf;
for(int i=0;i<n;i++){
int pos=lower_bound(a,a+i+1,a[i])-a;//严格递增用upper_bound
d[pos]=a[i];
}
int ans;
for(ans=0;d[ans]!=inf;ans++);
return ans;
}//最大非递减子序列长度,时间复杂度O(nlogn)
//如果题目要求求最大非递增子序列长度,只需先把输入数组反过来,再求LNDS(n)即可