推荐系统
HGaviN
邮箱:heguannan@163.com
展开
-
推荐系统基本概念---《推荐系统技术、评估及高效算法》---读书笔记(1)
一、本书基本信息 书名:《推荐系统技术、评估及高效算法》 作者:Francesco Ricci, Lior Rokach, Bracha Shapira, Paul B.Kantor. 译者:李艳明,胡聪,吴宾等 出版社:机械工业出版社 英文版出版时间:2010年 中文版出版时间:2017年二、概述目录组织图(点击图放大)三、个人体会: 1、 本书中的推...原创 2018-03-17 10:52:40 · 2969 阅读 · 2 评论 -
基于用户的协同过滤算法---《推荐系统实践》---Python源码(9)
一、总体说明本代码以《推荐系统实践》这本书的代码为框架,进行改写。数据集为点击打开链接中的ratings.dat数据。为了方便起见,所有代码都写在一个文件中,能够保证无需任何更改,直接执行,就能出结果二、符号说明参数名 类型 说明 data list 读取ratings.dat的全部数据 M int 将data近似分为M份,M-1为训练数据,1份为测试数...原创 2018-03-26 15:18:06 · 1847 阅读 · 0 评论 -
推荐系统评估---《推荐系统技术、评估及高效算法》---读书笔记(8)
一、目录组织图(单击图方法)二、补充笔记1、因为推荐系统的算法多种多样,为了评估算法对数据的是影响,可以采取离线实验,用户调查、在线实验的方式进行。2、离线实验的目的是过滤掉不恰当的方法,减轻用户调查和在线实验的成本。3、对于得到的实验数据和统计结果,可以采取统计分析工具,比如t检验,置信度,置信区间等方法。4、下面的一些指标有些只能在在线实验和用户调查环节得到。5、预测准确度一般可以使用均方根误...原创 2018-03-20 16:09:07 · 1916 阅读 · 0 评论 -
推荐系统小结(12)
一、思维导图(单击图放大)二、反思小结1、推荐系统通过使用用户的一切信息,来对用户的喜好进行捕捉,来进行推荐。但是,推荐系统的目的是为用户推荐用户需要或者感兴趣的商品。而在书中,仅仅是谈用户的喜好和兴趣,这在音乐电影推荐上能够适用,但是在物品推荐上,尤其是电商推荐上,就不一定。在电商推荐上,我觉得最重要的是捕捉用户的需求。例如1个用户有在X猫超市买洗衣液的习惯,那么电商推荐应该要捕捉到用户,多久能...原创 2018-03-30 10:12:56 · 447 阅读 · 0 评论 -
基于隐语义模型的推荐算法---《推荐系统实践》---Python源码(11)
一、基本隐模型定义$$r_{ui}=\sum_{f=0}^{F}p_{u,f}q_{i,f}$$$r_{ui}$ 表示用户u对物品i的兴趣度,$p_{u,f}$表示用户和隐类的关系,$q_{i,f}$表示物品i与隐类的关系。p 和 q需要根据数据集进行训练。训练成本函数:$$C = \sum_{(u,i)\in K}^{ } (r_{ui}-\sum_{f=0}^{F}p_{u,f}q_{i,f}...原创 2018-03-30 09:39:57 · 2239 阅读 · 6 评论 -
情境感知(上下文信息)推荐系统---《推荐系统技术、评估及高效算法》---读书笔记(7)
一、目录组织图(单击图放大)二、补充笔记1、情境,简言之,可以理解为用户的一些额外信息,比如位置、时间、天气、是否有同伴陪同等。我认为是能够影响用户决策的一些额外的信息。2、推荐问题可以归纳为预测一个用户未接触的物品的评分,这个预测通常是基于该用户对其他物品的评分、其他用户对该物品的评分以及一些其他可以利用的信息。3、显式获得,直接询问用户;隐式获得,例如通过手机获得位置信息;推断获得,通过统计和...原创 2018-03-20 14:29:43 · 2110 阅读 · 0 评论 -
开发基于约束条件的推荐系统---《推荐系统技术、评估及高效算法》---读书笔记(6)
一、目录组织图(单击可放大)二、补充笔记1、基于约束的推荐系统是在信息不完全的情况下,导致基于内容和协同过滤的方法可能失效情况下的一种推荐系统设计方法。它建立在用户的需求和愿望能够明确表述的情况下。我认为这个实际上可以看成一个多类型关键字搜索的过程(比如在X东购买笔记本电脑时,通过勾选内存大小,显卡类型,屏幕大小,价格区间等就能够获得符合要求的笔记本电脑),这个系统是一个用户主动行为,不包含预测的...原创 2018-03-19 15:29:21 · 1269 阅读 · 1 评论 -
协同过滤算法的高级课题---《推荐系统技术、评估及高效算法》---读书笔记(5)
一、目录组织图(单击图放大)二、补充笔记1、本章说的推荐系统实际上被定义成了一个数学问题,就是已知物品的一些特征,用户的一些特征,用户对物品的评价去预测用户对没有评价物品的评价。实际上,随着深度的学习的发展,可能使用深度学习能够得到更好的评分预测。2、当然在电影和音乐的推荐中,评分的高低一定程度上可以反映用户的喜好,但是在购物推荐上,却不一定。3、在基准预测中,预测用户对没评价物品的评分,考虑用户...原创 2018-03-19 15:08:42 · 688 阅读 · 0 评论 -
基于近邻推荐方法综述---《推荐系统技术、评估及高效算法》---读书笔记(4)
一、组织目录图(单击图放大)二、补充笔记1、协同过滤的方法可以分为两类,一种为基于近邻的方法,一种为基于模型的方法。2、基于近邻的方法可以分为基于用户的方法和基于物品的方法。基于用户的方法为了评估用户u对物品i的感兴趣程度,可以利用和用户u相似的用户v对物品i的评价来预测。基于物品的方法,是基于用户u给相似于i的物品的评分来预测用户u对物品i的评分。3、注意协同过滤中的基于近邻中的基于物品的方法和...原创 2018-03-18 17:16:40 · 853 阅读 · 0 评论 -
基于内容的推荐系统---《推荐系统技术、评估及高效算法》---读书笔记(3)
一、目录组织图(点击图放大)二、补充笔记1.基于内容的推荐系统通过分析一系列用户之前已评分物品的文档和(或)描述,从而基于用户已评分对象的特征建立模型或个人信息;简言之,利用物品的内容数据来预测它和用户个人信息的相关性。2.在抽取物品特征的时候,采用的自身或者外部知识源(词典/本体/百科),根据知识源的不同来区分物品的表示方法。3.学习用户特征的算法能够学习一个能对每个用户兴趣建模的函数。这些方法...原创 2018-03-17 17:13:40 · 843 阅读 · 0 评论 -
推荐系统中的数据挖掘方法---《推荐系统技术、评估及高效算法》---读书笔记(2)
一、目录组织图(点击图放大)二、补充笔记1、在社交网络环境下,余弦相似度效果最好。但,在一般案例中,推荐系统预测的精确性不受相似度度量方法选择的影响。2、交叉验证需要大数据集,否则结果不可信。3、分类器评估可以考虑以下指标:真正(TP):分类到A且真的属于A的实例数量,真负(TN):没有分类到A且真的不属于A的实例数量,假正(FP):分类到A但不属于A的实例数量,假负(FN):没有分类到A但属于A...原创 2018-03-17 12:16:51 · 1051 阅读 · 0 评论 -
基于物品的协同过滤算法---《推荐系统实践》---Python源码(10)
一、源码说明基于物品的协同过滤算法和基于用户的协同过滤算法类似,以给该物品评分的用户作为物品的特征向量,从而计算物品之间的余弦相似度。以下代码根据点击打开链接修改而来,修改了计算相似度的函数和进行推荐的函数。推荐效果的准确度不到10%,基于用户的准确度在20%。二、准确度不高的原因分析从推荐的结果看,根据代码设定是要推荐TOP-10的一个列表,但是结果往往很多只有3,4个,并没有10个。原因是用户...原创 2018-03-27 10:55:45 · 1843 阅读 · 0 评论