今天的红色是昨天的红色吗?我们无从得知现在的红色是不是之前的红色。有人会说他可以通过记忆判断,他记住了之前的红色,但是不妨再认真想想自己究竟记住了什么?是和眼前的红色一模一样吗?即使是一样的,你也无法断定记住的就是红色,事实上所谓记忆也是现在发生的事情,和眼前看到的没有本质区别。这一切必须有个终点,那个终点就是定义。这和时间间隔是否均匀一样是定义!
人类在前语言给出相似判断,表现为心理状态,情绪、信念,这种信念充当最终的依据,无论是语言判断还是信念,是在变动不止的世界中做出的,沉思和判断不会终止这个世界。
这只是‘红色’这个词语的一般用法——看到某种东西自然的说出红色这个词语,但这里没有任何不变性——除非这就是‘不变’的用法。
我们究竟该把什么东西视为回忆正确的标准呢?——如果我们动用的是色样而不是我们的记忆,那么,在某些情况下,我们会说色样的颜色改变了,而我们是凭借记忆来判断这一点的。然而,在某些情况下,我们不也可以说(比如)我们的记忆图像变黯淡了吗?我们不是像任由样本摆布那样任由记忆摆布吗?
——《哲学研究》
人类怎么使用一个词语?就是这样使用!实际上人们根本不知道语言怎样产生,从以下事实可以得到证明:人类没有办法直接写出语言的产生算法。人们说话却不思考语言,但对于语言本身的思考,哪怕只是一种尝试,也是现在的AI语言模型不具备的能力。很多人把搜索引擎也作为自己的知识,这看上去很荒谬,但是每个人头脑中都有这样一个黑盒,输入一个问题产生一个答案。
很多人可能认为人类知道使用单个词语,这主要取决于‘知道’的定义,自然这也是一种语言游戏,可以这么看:红色的图像难道就会得出‘红色’这个词语吗?实际上这二者并没有必然联系,有可能在看到红色图像之后,会产生‘圆’,甚至是‘猫’——这完全不确定,由复杂的场景决定。
以一种上帝视角看这件事:脑根据输入计算,得到某个结果,这个结果引起表示‘红色’的词语的神经激活。当然一个人要能理解这句话,他必须已经处在这样的语言游戏之中,人类被训练得这么说话。
关键之处不在于否定这一切,而是在说明人类究竟生活在什么样的世界中——指导我们生活的大部分思想都是被我们不假思索地接受过来的,我们不是白手起家创造一个世界或一种环境,然后开始生活。毋宁说,我们直接迈进一个业已存在的世界和一种业已存在的文化,我们学习与之互动。
可以把这个结论扩展到一切词语:你怎么知道‘红色’这个词语现在和刚才是一样的?词语本身也是经验的一种,因此答案就是定义!这就是这个词语的用法,人类就是这样使用的。
有一种不变的东西吗?不变和什么对比?和任何事物比较都是无济于事的,这是不变的定义、这个词语的用法。
变和不变都是词语!我怎么知道这两个词语是不变的?这也是一种定义,这个定义引出了一种语言游戏。
人类通过词语看似营造了一个恒定的世界,但这只是一种特殊的错觉,这只是一种定义。【不只是语言的定义,还包括前语言的条件反射模式,但是语言加剧了这一现象】
人类可以任由这些发生,只是观察这一切的生灭,也可以认为这一切是在延续之前的反应模式,但这只是两种不同的语言游戏,除非(在某种程度上)超越语言与归类的模式——或许这就是最终的禅。
你可曾安静地坐着,既不专注于任何事物,也不费力地集中注意力,而是非常安详地坐在那里?你会听到远处的喧闹声以及近在耳边的声音,这意味着你把所有的声音都听进去了,你的心不再是一条狭窄的管道。若是以这种方式轻松自在地听,就会发现自己的心在不强求的情况下产生了惊人的转变。这份转变里自有美和深刻的洞识。
——《生命之书》
赖欣巴哈在《科学哲学的兴起》简洁的总结了相对论的讨论,但是事情比他想的更疯狂,不过这符合以下观点:每个时刻都是等价的,信息是守恒的,既可以从一个时刻向后推导,也可以向前推导。
赖欣巴哈讨论的是相对论对于测量的严肃思考。
附录
长度与定义
发现非欧几何学之后,高斯企图进行经验的验证,从而确认物理世界的几何学。为了这一目的,高斯测量了以三座高山的顶峰为角的一个三角形的诸角。他的测量结论是这样小心地表述出来的:在观察的误差限度之内,欧几里德几何学是真的,或换言之,如果对180度这个诸角之和有些偏离,观察的不可避免误差也使人不可能证明有偏离的存在。如果世界是非欧几何的,支配这个世界的非欧几何与欧几里德几何学相差也极微,要判明二者之间的差别也是不可能的。
我们姑且假设高斯的结论是肯定的,他测出的三角形的角和是与180度有所不同的。那么这是否可以得出,物理世界的几何学是非欧式的呢?
有一个办法来避开这样的结论。测量两个远距客体之间的角是采取通过装置在六分仪或类似仪器上的透镜观看那两个客体而进行的。这样,从客体射到光学仪器的光线通常被假定为三角形的各边。我们怎么能知道光线是以直线射过来的呢?也可以说它们不是以直线射来的,它们的途径是弯曲的,高斯的测量也就并不是对各边为直线的三角形的测量。在这样的假设之下,这个测量就不是具有结论性的了。
有没有一种办法可以验证这个新假设呢?一条直线是两点之间最短的距离。如果光线的途径是弯曲的,那么它的起端和末端必定可以用比光线途径为短的另一条线连接起来。这样一次测量至少在原则上可以用测量杆来完成的。测量杆先沿着光的途径比量,然后沿着若干另外的连接线比量。如果有一条较短的连接线,那么经过若干次的试测就会找到它的了。假设检验是做过了,结果是否定的,即是说,我们发现光线的途径是两点之间的最短连接线。那么,这个结果与以前关于三角之和的测量结合起来是否就可以证明物理世界的几何学是欧几里德式的呢?
很容易看出,这个情况像前面的一样,是不能作为结论的。我们怀疑光线的行为,而用刚性的测量杆进行比量来检验它。现在我们也可以怀疑刚性的测量杆的行为。只有在测量杆在它移动中长度无变化的条件下,一个距离的测量结果才是可靠的。我们很可以假设测量杆在沿光线途径移动中为某种不知道的力所拉长了;那么,沿光线途径所能接着安放的测量杆的数目就减少了,所获得的距离的数值就比光线途径的数值为小了。这样我们就会相信光线途径比其他途径为短,而实际上它是较别的途径为长。检验一条线是否最短距离这件事须依赖于测量杆的行为。但我们怎么能够检验一根刚性的测量杆是真正刚性的,即是说,它不会伸长或缩短呢?
我们把一根刚性的测量杆从一个地点移到远远的一点。它是否跟最初一样长呢?为了要检验它的长度,我们得再用一根测量杆。假设在第一个地点上两根杆互相交叠时是长度一样的;然后把其中一根拿到另一地点去。这两根杆是否仍旧长度相等呢?我们不能回答这个问题。为了比较这两根杆,我们必须把一根杆拿回原地,或是把另一根杆也拿到第二个地点,因为要比较长度是只有把两根杆交叠在一起才行的。这样的做法,我们是会发现它们长度相等的,如果两根杆都拿到第二个地点,我们也会发现它们长度相等的。但是,没有办法知道,当这两根杆分处两地时是否相等。
有人会提出反驳,说还有另一种比较办法。例如,如果测量杆在移动时改变长度,我们只需把测量杆和我们的手臂比较一下就会发现这种改变的,为了消除这种反驳,让我们假设使移动的物体缩小或伸长的力是普遍的,即是说,一切物理客体,包括人体在内,同样都要改变长度。显然,这样就任何改变都观察不出了。
考虑中的这个问题是一个关于一致性的问题。必须认清,要检验一致性是没有办法的。假设在夜间一切物理客体,包括我们的身体在内,变成十倍那么大。我们早晨醒来时就没有办法能检验这个假设。实际上我们也确实无法发现这件事。按照所规定的条件,这种改变的结果是观察不出的,因此我们也就没法收集证明它或反驳它的证据。也许我们全都是今天比昨天大了十倍。只有一个办法可以避免这种语言含混,那就是把一致性问题不视为一个观察问题,而视为一个定义问题。我们不应说“两根位处不同地点的测量杆是相等的”,而应说,我们把这两根杆称为相等的。
时间间隔与定义
我们比较着连续的时间间隔,并有办法说出在什么时候它们是同样长度的。这些办法是什么呢?
我们用标准钟校正我们所带的表;标准钟则又由天文学家来校正。天文学家用恒星来校正他的标准钟。由于恒星的运动是地球转动的映象,因此,我们用来作为我们的标准时计的乃是转动着的地球。那么我们怎么知道转动着的地球是一个可靠的时计呢,即是说,怎么知道地球所记录的是严格地均匀的时间呢?
当我们问天文学家他是怎么知道这一事实的时候,他就告诉我们,我们使用地球时计时必须十分谨慎。如果我们把太阳的某一次上中天(通过天顶的时候)到下一次上中天这一段时间即是从一个中午到下一个中午算作一天,我们就不会达到一种均匀的时间。这一种时间,即太阳时,是并不完全均匀的,因为地球绕日运行所沿的轨道是一个椭圆形。为了避免这样造成的误差,天文学家用某一恒星的上中天所决定的周期来计量地球的旋转,这种时间叫做恒星时,排除了地球运行所造成的不规则性,因此恒星离开地球非常远,地球对于一个遥远的恒星的方向可说是不变的。
然而,天文学家又怎么能知道恒星时是真正均匀的呢?当我们问他时,他会回答,严格说来,就是恒星时也不是完全均匀的,因为地球的自转轴并不老是保持同一方向,而是摆动的,即有点像转动着的陀螺的摆动那样微微摇摆的。(这种摆动的运动很慢,完成一个周转要经过约25 000年。)因此,天文学家称为均匀时间的东西,是一种不能直接观察的东西;他得用他的数学方程式表达出来,他的结果则将表现为他对于观察所得的数字所作的某些校正。所谓均匀时间就是天文学家借助于数学方程式投射到可观察的资料中的某种时间流程。
只有一个问题还未解决。天文学家怎么知道他的方程式决定着一种严格均匀的时间呢?天文学家会回答,他的方程式表达着力学定律,因为这些方程式是从自然观察中推导出来的,所以它们是有效的。但是,为了要检验这些观察所得的定律,我们又必须有一个参考时间,即一种均匀时间,根据这种时间我们才能发现某一运动是否均匀,否则我们就无法知道力学定律是否为真。于是,我们达到了一个循环论证。为了要知道均匀时间,我们必须知道力学定律,为了要知道力学定律,我们又必须知道均匀时间。
只有一条出路可以避免这种恶性循环,不把均匀时间问题视为一个认识问题,而是一个定义问题。我们不能直接比较前后两个时间间隔;我们只能够称他们为相等的。