自然常数

自然常数e就是lim(1+1/x)^x,x→+∞或lim(1+z)^(1/z),z→0,其值约为2.71828,是一个无限不循环小数。为超越数

[1]  e,作为数学常数,是自然对数函数的底数。有时称它为 欧拉数(Euler number),以瑞士数学家欧拉命名;也有个较鲜见的名字 纳皮尔常数,以纪念苏格兰数学家 约翰·纳皮尔 (John Napier)引进对数。它就像圆周率π和虚数单位i,e是数学中最重要的常数之一。
它的其中一个定义是
,其数值约为(小数点后100位):“e ≈ 2.71828 18284 59045 23536 02874 71352 66249 77572 47093 69995 95749 66967 62772 40766 30353 54759 45713 82178 52516 64274”。
第一次提到常数e,是约翰·纳皮尔(John Napier)于1618年出版的对数著作附录中的一张表。但它没有记录这常数,只有由它为底计算出的一张自然对数列表,通常认为是由威廉·奥特雷德(William Oughtred)制作。第一次把e看为常数的是雅各·伯努利(Jacob Bernoulli)。
已知的第一次用到常数e,是莱布尼茨于1690年和1691年给惠更斯的通信,以b表示。1727年欧拉开始用e来表示这常数;而e第一次在出版物用到,是1736年欧拉的《力学》(Mechanica)。虽然以后也有研究者用字母c表示,但e较常用,终于成为标准。
用e表示的确实原因不明,但可能因为e是“指数”(exponential)一字的首字母。另一看法则称a,b,c和d有其他经常用途,而e是第一个可用字母。不过,欧拉选这个字母的原因,不太可能是因为这是他自己名字Euler的首字母,因为他是个很谦虚的人,总是恰当地肯定他人的工作。
很多增长或衰减过程都可以用指数函数模拟。 指数函数的重要方面在于它是唯一的函数与其 导数相等(乘以常数)。e是 无理数超越数(见林德曼—魏尔施特拉斯定理(Lindemann-Weierstrass))。这是第一个获证的超越数,而非故意构造的(比较 刘维尔数);由 夏尔·埃尔米特(Charles Hermite)于1873年证明。

超越数主要只有自然常数(e)和圆周率(π)。自然常数的知名度比圆周率低很多,原因是圆周率更容易在实际生活中遇到,而自然常数在日常生活中不常用。
融合e,π的最完美的 欧拉公式e^(iπ)+1=0,也是超越数e的数学价值的最高体现。
自然常数一般为公式中乘方的底数和对数的底。为什么会这样,主要取决于它的来历。
自然常数的来法比圆周率简单多了。它就是当
 时函数
 值的极限。
即:
同时,它也等于1/0!+1/1!+1/2!+1/3!+1/4!+1/5!+……。注意,0!=1。
自然常数经常在公式中做对数的底。比如,对指数函数和对数函数求导时,就要使用自然常数。函数y=f(x)=a^x的导数为f'(x)=a^x*ln(a)。函数y=f(x)=log a(x)的导数为f'(x)=log a(e)/x。
自然常数也和质数分布有关。有某个自然数a,则比它小的质数就大约有a/ln(a)个。在a较小时,结果不太正确。但是随着a的增大,这个定理会越来越精确。这个定理叫 素数定理,由 高斯发现。
此外自然常数还有别的用处。比如解题。请把100分成若干份,使每份的乘积尽可能大。把这个题意分析一下,就是求两个数a和b,使ab=100,求a的b次方的最大值。(说明,a可以为任意有理数,b必须为整数。)此时,便要用到自然常数。这需要使a尽量接近e。则b应为100/e≈36.788份,但由于份数要为整数,所以取近似值37份。这样,每份为100/37,所以a的b次方的最大值约为“94740617+167818+32.652”。
e是极为常用的超越数之一,它通常用作自然对数的底数。
收敛性证明

由均值不等式,有
即序列
 单调上升;另一方面,我们尝试证明
 。即要证
 ,由均值不等式得
又明显有
 ,故
 成立,所以
 成立。
 单调上升有上界,即
 收敛。
另外形式

证法1

 ,易知
则已知
 收敛于
 ,即
所以,
 ,不妨设
 ,则有
 ,有
又易知对固定的
 和
 ,有
所以,对此给定
 ,
 ,当 时,有
 ,当 时,有
 ,即
证毕.
注:由该证法可以看出,对任意正数序列
 ,若存在一个收敛数列
 ,使得
 收敛,且极限为
 .

证法2

欲证
 ,即要证
另一方面,又有
则有
故有
证毕.
计算方法

对指数函数求导

注:其实任何满足微分方程
 的解都必为形式
 ,其中
 为任意常数

泰勒级数展开

由上可知,函数
 存在任意阶的导数。将其在点
 处进行泰勒展开,有
Peano形式的余项
 (参见 泰勒公式词条)
令上式
 ,有
故有
即得
由此就可根据上式求解出
 的具体数值

限制精度

但是在应用中我们需要的是
 的具有某位精度的数值,比如说要求
 的小数点前2000位的准确数值。此时Peano余项不够用了。我们换一个余项,例如—— Lagrange余项
其中
 。将
 与
 代入,得
所以
故只要令
 ,求解出满足这个不等式的任意一个
 ,然后按照这个
 计算
便得
 的小数点后2000位的准确数值

### C++ 中自然常数 e 的表示方法或计算方式 在 C++ 编程语言中,可以通过多种方式来表示或计算自然常数 \( e \),具体取决于需求场景。 #### 方法一:直接调用标准库中的预定义值 C++ 提供了 `<cmath>` 头文件,在其中可以找到 `exp` 函数用于计算指数函数。通过传递参数 1 给该函数即可得到自然常数 \( e \)[^4]: ```cpp #include <iostream> #include <cmath> // 包含 exp 函数 int main() { double e = exp(1); // 使用 exp(1) 来获取自然常数 e std::cout << "e = " << e << std::endl; return 0; } ``` 此方法简单高效,适用于大多数情况下的数值计算。 --- #### 方法二:基于泰勒级数展开手动计算 如果需要自行实现或者提高精度控制,则可采用泰勒级数展开的方式进行逼近求解。其基本公式为: \[ e = \sum_{k=0}^{n}\frac{1}{k!} \] 以下是两种不同风格的手动计算代码示例: ##### 示例 A (基础版) 利用简单的循环结构逐步累加每一项的结果直到指定次数为止[^1]: ```cpp #include <stdio.h> int main() { double e = 1, t = 1; int n, i; scanf("%d", &n); for(i = 1; i <= n; i++) { t *= i; // 更新当前阶乘值 e += 1 / t; // 添加新的倒数项至总和 } printf("%.15f\n", e); // 输出保留十五位小数后的结果 return 0; } ``` ##### 示例 B (高级优化版) 为了进一步提升性能并支持更大范围内的输入数据处理能力,还可以引入更复杂的算法逻辑以及更高效率的数据类型转换操作[^2]: ```cpp #define ll long long #include <bits/stdc++.h> using namespace std; ll jc(ll n){ // 定义一个返回long long类型的阶乘辅助功能模块 ll i,x=1; for(i=1;i<=n;i++){ x*=i; } return x; } main(){ double ans=0.0; ll n,i,j,k,x; cout<<"位数:"<<flush; cin>>x; cout<<"精度:"<<flush; cin>>n; for(i=0;i<=n;i++){// 循环迭代直至达到目标精确度级别停止条件满足之前持续执行下去 ans+=1.0/jc(i)*1.0; } cout<<setprecision(x)<<fixed<<ans;// 设置最终显示的小数点后有效数字数量限制 } ``` 上述两段代码分别展示了如何运用不同的编程技巧完成相同的目标——即估算出尽可能接近真实值的\( e\) 值。 --- #### 方法三:其他可能的应用场合考虑因素 除了以上提到的方法之外,在某些特殊情况下也可能需要用到更加复杂的技术手段比如自适应步长调整机制等等;但是这些通常只会在非常特定的研究领域才会被广泛采纳应用而已,并不适合一般性的日常开发工作当中频繁使用到它们。 --- ### 总结 综上所述,对于绝大多数普通的应用场景而言,推荐优先选用第一种方案也就是借助于现有的标准化数学运算接口所提供的便捷途径快速获得所需答案最为合适不过啦!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值