【leetcode703】【返回数据流中的第K大元素】

leetcode 703 返回数据流中的第K大元素

设计一个找到数据流中第K大元素的类(class)。注意是排序后的第K大元素,不是第K个不同的元素。你的 KthLargest 类需要一个同时接收整数 k 和整数数组nums 的构造器,它包含数据流中的初始元素。每次调用 KthLargest.add,返回当前数据流中第K大的元素。

示例:

int k = 3;
int[] arr = [4,5,8,2];
KthLargest kthLargest = new KthLargest(3, arr);
kthLargest.add(3); // returns 4
kthLargest.add(5); // returns 5
kthLargest.add(10); // returns 5
kthLargest.add(9); // returns 8
kthLargest.add(4); // returns 8

你可以假设 nums 的长度≥ k-1 且k ≥ 1

解题思路:

解法一:

比较直接,就是记录前K个数字,有新的数字进来,就排序一遍,把最小的扔出去,一直保留K个最大的值,使用最快的快排法,时间复杂度去到O(N·KlogK),因为要把所有元素看一遍,所以乘上N

解法二:

使用优先队列,小顶堆实现,维护一个size为K的小顶堆,每次进来一个元素,就和顶点的值比较,顶点是K个值中最小的,如果比它小,就不用理会,如果比它大,那就扔掉顶点的值,放入新值,调整小顶堆。时间复杂度为O(N·logK),小顶堆的调整操作为logK。这是流式数据,肯定会经过N次的计算,所以按照单次操作看,就是O(logK),比解法一优化了K倍!!!

代码思路:

使用heapq函数库,初始化出来的就已经是小顶堆了,我曾经试过一个错误的思路,就是直接把前K个数放进一个空的self.heap里面,可是这样子做的话,一开始没有做到全部的数据nums排序一遍,所以还是直接先把数据载入heap中,然后再取出那些最小的值。 add函数就是如果堆还没满,可以直接添加,堆满了就判断大小

代码:

解法一

class KthLargest:

    def __init__(self, k: int, nums: List[int]):
        self.nums = sorted(nums,reverse=True)
        self.nums = self.nums[:k]
        self.k = k

    def add(self, val: int) -> int:
        self.nums.append(val)           
        self.nums = sorted(self.nums,reverse=True)
        if len(self.nums)<=self.k: #规避空列表问题
            return self.nums[-1]
        self.nums.pop()
        return self.nums[-1]
        

解法二


import heapq 
class KthLargest:
    def __init__(self,k,nums):
        self.k = k
       
        self.heap = nums
        heapq.heapify(self.heap)
        while len(self.heap) > k:
            heapq.heappop(self.heap)
            
            
    def add(self,val):
        if len(self.heap) < self.k : #堆的大小还没K大,可以直接放进去
            heapq.heappush(self.heap,val)
        elif self.heap[0] < val:
            heapq.heapreplace(self.heap,val)
        return self.heap[0]

k = KthLargest(3,[4,5,8,12])
print(k.add(3))
print(k.add(5))
复 杂 度 分 析 : \color{red}{复杂度分析:}
  1. 解法一
    时间复杂度:O(nklogk),快排需要klogk,遍历n次
    空间复杂度:维护一个K大的数组,所以为O(K)

  2. 解法二
    时间复杂度:单次的操作的时间复杂度为O(logK),流式数据全部的时间复杂度为O(N·logK),比第一种方法省了个k
    空间复杂度:O(K),heap大小

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值