leetcode 703 返回数据流中的第K大元素
设计一个找到数据流中第K大元素的类(class)。注意是排序后的第K大元素,不是第K个不同的元素。你的 KthLargest 类需要一个同时接收整数 k 和整数数组nums 的构造器,它包含数据流中的初始元素。每次调用 KthLargest.add,返回当前数据流中第K大的元素。
示例:
int k = 3;
int[] arr = [4,5,8,2];
KthLargest kthLargest = new KthLargest(3, arr);
kthLargest.add(3); // returns 4
kthLargest.add(5); // returns 5
kthLargest.add(10); // returns 5
kthLargest.add(9); // returns 8
kthLargest.add(4); // returns 8
你可以假设 nums 的长度≥ k-1 且k ≥ 1
解题思路:
解法一:
比较直接,就是记录前K个数字,有新的数字进来,就排序一遍,把最小的扔出去,一直保留K个最大的值,使用最快的快排法,时间复杂度去到O(N·KlogK),因为要把所有元素看一遍,所以乘上N
解法二:
使用优先队列,小顶堆实现,维护一个size为K的小顶堆,每次进来一个元素,就和顶点的值比较,顶点是K个值中最小的,如果比它小,就不用理会,如果比它大,那就扔掉顶点的值,放入新值,调整小顶堆。时间复杂度为O(N·logK),小顶堆的调整操作为logK。这是流式数据,肯定会经过N次的计算,所以按照单次操作看,就是O(logK),比解法一优化了K倍!!!
代码思路:
使用heapq函数库,初始化出来的就已经是小顶堆了,我曾经试过一个错误的思路,就是直接把前K个数放进一个空的self.heap里面,可是这样子做的话,一开始没有做到全部的数据nums排序一遍,所以还是直接先把数据载入heap中,然后再取出那些最小的值。 add函数就是如果堆还没满,可以直接添加,堆满了就判断大小
代码:
解法一
class KthLargest:
def __init__(self, k: int, nums: List[int]):
self.nums = sorted(nums,reverse=True)
self.nums = self.nums[:k]
self.k = k
def add(self, val: int) -> int:
self.nums.append(val)
self.nums = sorted(self.nums,reverse=True)
if len(self.nums)<=self.k: #规避空列表问题
return self.nums[-1]
self.nums.pop()
return self.nums[-1]
解法二
import heapq
class KthLargest:
def __init__(self,k,nums):
self.k = k
self.heap = nums
heapq.heapify(self.heap)
while len(self.heap) > k:
heapq.heappop(self.heap)
def add(self,val):
if len(self.heap) < self.k : #堆的大小还没K大,可以直接放进去
heapq.heappush(self.heap,val)
elif self.heap[0] < val:
heapq.heapreplace(self.heap,val)
return self.heap[0]
k = KthLargest(3,[4,5,8,12])
print(k.add(3))
print(k.add(5))
复 杂 度 分 析 : \color{red}{复杂度分析:} 复杂度分析:
-
解法一
时间复杂度:O(nklogk),快排需要klogk,遍历n次
空间复杂度:维护一个K大的数组,所以为O(K) -
解法二
时间复杂度:单次的操作的时间复杂度为O(logK),流式数据全部的时间复杂度为O(N·logK),比第一种方法省了个k
空间复杂度:O(K),heap大小