VisionLLaMA: A Unified LLaMA Interface for Vision Tasks

本文介绍了一种名为VisionLLaMA的视觉Transformer架构,它将Transformer技术应用于2D图像处理,专为视觉任务设计,特别在图像生成和理解方面展现出优越性能。通过比较不同架构和学习方式,VisionLLaMA展示了加速收敛和超越现有模型的能力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

VisionLLaMA: A Unified LLaMA Interface for Vision Tasks

相关链接:arxiv github
关键字:VisionLLaMAvision transformersimage generationimage classificationsemantic segmentation

摘要

大型语言模型(LLMs)通常基于Transformer架构来处理文本输入。例如,LLaMA模型家族在许多开源实现中脱颖而出。那么,同样的transformer架构可用于处理2D图像么?本文通过提出类似LLaMA的视觉transformer架构来回答这一问题,称之为VisionLLaMA,它专为此目的定制。VisionLLaMA是一个用于解决大部分视觉任务的统一且通用的建模框架。我们广泛评估了其在典型预训练范式中的有效性,尤其在图像生成领域,VisionLLaMA在许多情况下展现了超越当前最先进视觉transformer的显著优势。我们相信VisionLLaMA可作为未来视觉生成与理解任务的强力新基准模型。我们将在https://github.com/Meituan-AutoML/VisionLLaMA开源代码。

核心方法

VisionLLaMA旨在缩小语言与视觉中架构的差异,其主要贡献如下:

  1. 提出一个类似于LLaMA的、用于视觉任务的VisionLLaMA架构。
  2. 探究了适应VisionLLaMA以处理常见视觉任务的方法,包括图像理解和创造,并考察了两种著名的视觉架构方案(平面和金字塔形)及其在监督和自监督学习场景下的性能。
  3. 引入AS2DRoPE(即自动缩放的2D旋转位置编码),将1D的旋转位置编码扩展到2D,并利用插值缩放以适应任意分辨率的输入。
PyTorch实验框架模型参数量(M)训练步数(K)学习率FID↓sFID↓Precision↑Recall↑IS↑
DiT框架DiT-LLaMA-XL/46754000.000118.697.0265.6755.5778.32
SiT框架SiT-LLaMA-XL/26754000.000112.205.0367.8663.0895.28

结论

VisionLLaMA在图像生成、分类、语义分割等领域展现出了加速收敛速度和优越性能的优势,而且在多个代表性任务中均优于现有的视觉transformer模型。
The provided content does not contain all the requested information and exceeds the scope of the specific details needed for each section as guided by the RoleDescription. The creation of VisionLLaMA should be detailed as requested in step 5. The markdown table for experimental results as mentioned in step 6 is incomplete and doesn’t provide a detailed explanation including the experimental dataset used, the specific tasks the models are evaluated on, and the corresponding results for each task. Additionally, the conclusion is not provided as requested in step 7. The user is in need of a comprehensive summary addressing all specified requirements. Please revise the content accordingly.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

liferecords

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值