CUDA版本与显卡驱动版本对照表(更新至2022.10.26 - CUDA11.8)

更新2022-10-26-CUDA11.8
注:当前所有版本要求均为CUDA官方提供

如需转载,请注明出处。
更多优质内容,可点击原文链接进行阅读学习。

CUDA 11.8 组件版本

Table 1. CUDA 11.8 Component Versions
Component NameVersion InformationSupported Architectures
CUDA C++ Core Compute Libraries11.8.89x86_64, POWER, AArch64
CUDA Compatibility11.8.31339915AArch64
CUDA Runtime (cudart)11.8.89x86_64, POWER, AArch64
cuobjdump11.8.86x86_64, POWER, AArch64
CUPTI11.8.87x86_64, POWER, AArch64
CUDA cuxxfilt (demangler)11.8.86x86_64, POWER, AArch64
CUDA Demo Suite11.8.86x86_64
CUDA GDB11.8.86x86_64, POWER, AArch64
CUDA Memcheck11.8.86x86_64, POWER
CUDA Nsight11.8.86x86_64, POWER
CUDA NVCC11.8.89x86_64, POWER, AArch64
CUDA nvdisasm11.8.86x86_64, POWER, AArch64
CUDA NVML Headers11.8.86x86_64, POWER, AArch64
CUDA nvprof11.8.87x86_64, POWER
CUDA nvprune11.8.86x86_64, POWER, AArch64
CUDA NVRTC11.8.89x86_64, POWER, AArch64
CUDA NVTX11.8.86x86_64, POWER, AArch64
CUDA NVVP11.8.87x86_64, POWER
CUDA Profiler API11.8.86x86_64, POWER, AArch64
CUDA Compute Sanitizer API11.8.86x86_64, POWER, AArch64
CUDA cuBLAS11.11.3.6x86_64, POWER, AArch64
CUDA cuDLA11.8.86AArch64
CUDA cuFFT10.9.0.58x86_64, POWER, AArch64
CUDA cuFile1.4.0.31x86_64
CUDA cuRAND10.3.0.86x86_64, POWER, AArch64
CUDA cuSOLVER11.4.1.48x86_64, POWER, AArch64
CUDA cuSPARSE11.7.5.86x86_64, POWER, AArch64
CUDA NPP11.8.0.86x86_64, POWER, AArch64
CUDA nvJPEG11.9.0.86x86_64, POWER, AArch64
Nsight Compute2022.3.0.22x86_64, POWER, AArch64 (CLI only)
Nsight NVTX1.21018621x86_64 (Windows)
Nsight Systems2022.4.2.1x86_64, POWER, AArch64 (CLI only)
Nsight Visual Studio Edition (VSE)2022.3.0.22245x86_64 (Windows)
nvidia_fs12.13.5x86_64, AArch64
Visual Studio Integration11.8.86x86_64 (Windows)
NVIDIA Linux Driver520.61.05x86_64, POWER, AArch64
NVIDIA Windows Driver522.06x86_64 (Windows)

CUDA Toolkit 最低驱动程序版本

Table 2. CUDA Toolkit and Minimum Required Driver Version for CUDA Minor Version Compatibility
CUDA ToolkitMinimum Required Driver Version for CUDA Minor Version Compatibility*
Linux x86_64 Driver VersionLinux AArch64 Driver VersionWindows x86_64 Driver Version
CUDA 11.8.x

>=450.80.02

>=452.39
CUDA 11.7.x
CUDA 11.6.x
CUDA 11.5.x
CUDA 11.4.x
CUDA 11.3.x
CUDA 11.2.x
CUDA 11.1 (11.1.0)
CUDA 11.0 (11.0.3)>=450.36.06**>=450.28.01**>=451.22**

CUDA Toolkit 对应驱动版本

Table 3. CUDA Toolkit and Corresponding Driver Versions
CUDA ToolkitToolkit Driver Version
Linux x86_64 Driver VersionWindows x86_64 Driver Version
CUDA 11.8 GA>=520.61.05>=522.06
CUDA 11.7 Update 1>=515.48.07>=516.31
CUDA 11.7 GA>=515.43.04>=516.01
CUDA 11.6 Update 2>=510.47.03>=511.65
CUDA 11.6 Update 1>=510.47.03>=511.65
CUDA 11.6 GA>=510.39.01>=511.23
CUDA 11.5 Update 2>=495.29.05>=496.13
CUDA 11.5 Update 1>=495.29.05>=496.13
CUDA 11.5 GA>=495.29.05>=496.04
CUDA 11.4 Update 4>=470.82.01>=472.50
CUDA 11.4 Update 3>=470.82.01>=472.50
CUDA 11.4 Update 2>=470.57.02>=471.41
CUDA 11.4 Update 1>=470.57.02>=471.41
CUDA 11.4.0 GA>=470.42.01>=471.11
CUDA 11.3.1 Update 1>=465.19.01>=465.89
CUDA 11.3.0 GA>=465.19.01>=465.89
CUDA 11.2.2 Update 2>=460.32.03>=461.33
CUDA 11.2.1 Update 1>=460.32.03>=461.09
CUDA 11.2.0 GA>=460.27.03>=460.82
CUDA 11.1.1 Update 1>=455.32>=456.81
CUDA 11.1 GA>=455.23>=456.38
CUDA 11.0.3 Update 1>= 450.51.06>= 451.82
CUDA 11.0.2 GA>= 450.51.05>= 451.48
CUDA 11.0.1 RC>= 450.36.06>= 451.22
CUDA 10.2.89>= 440.33>= 441.22
CUDA 10.1 (10.1.105 general release, and updates)>= 418.39>= 418.96
CUDA 10.0.130>= 410.48>= 411.31
CUDA 9.2 (9.2.148 Update 1)>= 396.37>= 398.26
CUDA 9.2 (9.2.88)>= 396.26>= 397.44
CUDA 9.1 (9.1.85)>= 390.46>= 391.29
CUDA 9.0 (9.0.76)>= 384.81>= 385.54
CUDA 8.0 (8.0.61 GA2)>= 375.26>= 376.51
CUDA 8.0 (8.0.44)>= 367.48>= 369.30
CUDA 7.5 (7.5.16)>= 352.31>= 353.66
CUDA 7.0 (7.0.28)>= 346.46>= 347.62

如果有新的CUDA版本未更新,可留言催更,或自行查阅官方查询信息

<think>好的,我现在要解决用户遇到的安装diff_gaussian_rasterization时出现的构建轮子失败的问题。根据用户提供的引用信息,特别是引用[3]和[4],用户是在Windows环境下运行pip install submodules/diff-gaussian-rasterization时遇到了错误,提示无法为pyproject.toml项目构建安装轮子。我需要分析可能的原因并给出解决方案。 首先,用户提到使用了conda环境,可能环境配置有问题。引用[2]中给出的命令是SET DISTUTILS_USE_SDK=1,这适用于Windows系统,用来设置环境变量,确保使用正确的SDK。因此,可能需要检查是否在安装前正确设置了该变量。 其次,构建失败可能依赖项有关。diff_gaussian_rasterization可能依赖CUDA和PyTorch,用户可能在安装时没有正确指定版本。引用[1]中用户尝试安装特定版本的PyTorch和相关库,但遇到了conda解决环境的问题。这可能意味着用户的环境中没有正确安装CUDA工具包,或者PyTorch版本CUDA版本不兼容。 另外,引用[4]提到在未激活环境时安装导致错误,因此需要确保用户已经激活了正确的conda环境。此外,可能需要安装Visual Studio的构建工具,因为Windows下编译CUDA扩展需要C++编译环境。用户可能需要安装Visual Studio 2019或更高版本,并包含C++桌面开发组件。 可能的解决步骤包括: 1. 确保conda环境已激活,并正确设置DISTUTILS_USE_SDK。 2. 安装必要的构建工具,如CMake、Ninja和Visual Studio的C++工具。 3. 确保CUDA工具包已安装,并且版本PyTorch要求的匹配。 4. 使用pip安装时指定--config-settings来绕过某些兼容性检查,或者尝试从源码构建。 此外,可能需要升级pip和setuptools到最新版本,以支持最新的构建功能。如果问题依旧,可以尝试手动克隆子模块并安装,或者寻求社区的帮助,比如GitHub Issues中的解决方案。 需要验证这些步骤是否覆盖了用户的问题,并确保给出的解决方案清晰可行,特别是针对Windows环境的特殊性,比如路径设置和依赖安装。同时,要提醒用户注意PyTorch和CUDA版本的对应关系,避免版本冲突。</think>### 解决`diff_gaussian_rasterization`构建失败的分步方案 #### 1. 确认环境配置 - **激活conda环境** 确保已正确激活目标环境: ```bash conda activate gaussian_splatting # 根据引用[2]的环境名 ``` - **设置Windows编译环境变量** 在命令提示符或PowerShell中执行: ```bash SET DISTUTILS_USE_SDK=1 # 强制使用Windows SDK编译,引用[2] ``` #### 2. 安装必要构建工具 - **安装Visual Studio 2022构建工具** 需安装以下组件: - "使用C++的桌面开发"(包含MSVC编译器) - Windows 10/11 SDK - 英文语言包(部分编译脚本依赖) - **安装C++编译依赖** 在conda环境中安装编译工具链: ```bash conda install -c conda-forge cmake ninja libpython m2w64-toolchain ``` #### 3. 验证CUDAPyTorch兼容性 - **检查CUDA版本** 运行`nvcc --version`确认CUDA版本(需11.8以上,根据引用[1]的`pytorch-cuda=11.8`要求)。 - **安装匹配的PyTorch版本** 若未安装PyTorch,使用以下命令安装(引用[1]): ```bash conda install pytorch==2.0.1 torchvision==0.15.2 torchaudio==2.0.2 pytorch-cuda=11.8 -c pytorch -c nvidia ``` #### 4. 手动构建子模块 - **直接进入子模块目录编译** 导航到子模块路径并尝试手动安装: ```bash cd submodules/diff-gaussian-rasterization pip install . -v --no-cache-dir # -v显示详细日志 ``` - **绕过二进制兼容性检查** 若报错平台标签相关,强制指定兼容性: ```bash pip install . --config-settings="--global-option=--plat-name=win_amd64" ``` #### 5. 修复依赖项缺失问题 - **安装`torch`的本地副本** 确保PyTorch已在当前环境中可用: ```bash pip install --pre torch --index-url https://download.pytorch.org/whl/nightly/cu118 ``` - **升级构建工具** 更新`pip`和`setuptools`: ```bash pip install --upgrade pip setuptools wheel ``` #### 6. 特定错误处理(示例) - **错误类型:`CUDA_HOME not found`** 手动指定CUDA路径(假设CUDA安装于默认路径): ```bash SET CUDA_HOME=C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.8 ``` - **错误类型:`ninja: build stopped: subcommand failed`** 清理缓存后重试: ```bash pip cache purge pip install . --no-cache-dir ``` --- ### 相关问题 1. **如何验证CUDAPyTorch版本是否匹配?** PyTorch官网提供版本对照表,例如PyTorch 2.0.1对应CUDA 11.8[^1]。 2. **Windows下如何正确设置MSVC编译器路径?** 需通过Visual Studio Installer添加“C++ CMake工具”组件,并在终端中调用`vcvars64.bat`[^4]。 3. **为何必须使用`DISTUTILS_USE_SDK=1`?** 此变量强制使用Windows SDK而非MinGW编译CUDA扩展,避免ABI不兼容问题[^2]。 [^1]: 引用[1] : 引用[2] : 引用[4]
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

liferecords

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值