我需要多少个GPU才能运行Llama 70B?为了回答这个问题,你需要知道大型语言模型需要多少GPU内存。
公式很简单:
符号 | 描述 |
---|---|
M | 以千兆字节表示的GPU内存 |
P | 模型中的参数数量。例如,一个7B模型有70亿个参数。 |
4B | 4字节,表示每个参数使用的字节 |
32 | 4字节中有32位 |
Q | 应使用多少位来加载模型。例如,16位,8位或4位。 |
1.2 | 代表在GPU内存中加载额外内容的20%开销。 |
现在让我们试试一些例子。
为服务Llama 70B所需的GPU内存
让我们试试为Llama 70B加载16位。这个模型有700亿个参数。
那可是相当大的内存。单个A100 80GB可能不够,尽管2个A100 80GB应该足够支持16位模式下的Llama 2 70B模型。
如何进一步减少Llama 2 70B所需的GPU内存?
量化是一种减少内存占用的方法。量化通过将模型参数的精度从浮点数降低到较低位表示,如8位整数,来实现这一点。这个过程显著降低了内存和计算需求,使得模型能够更有效地部署,特别是在资源有限的设备上。然而,它需要仔细管理以维持模型的性能,因为降低精度可能会影响输出的准确性。
总的来说,大家普遍认为8位量化的性能与使用16位相似。然而,4位量化可能会对模型性能产生明显影响。
让我们再来一个例子,我们使用4位量化的Llama 2 70B:
这是你可以在2个L4 24GB的GPU上运行的东西。