SOJ 3085: windy's cake V

一道单调栈基础题,也可以用双端队列来做


题目链接:http://cstest.scu.edu.cn/soj/problem.action?id=3085


题意:

在一个非负数序列中寻找一个“价值”最大的子序列,

价值的定义是:该子序列的最小值*子序列和


算法:

O(n)算法:

需遍历序列两次。

依次算出以元素a[i]为最小值的序列的最大”价值”。。。(这样说是不是有点儿绕可怜

好吧。。换个说法。。

针对每个a[i],求出l[i],r[i],使得区间(r[i],l[i])尽量大,且区间(r[i],l[i])上的数均不大于a[i]

显然l[i] 就是i左边第一个比它小的数的下标,显然r[i] 就是i右边第一个比它小的数的下标,


在求l[i]和r[i]的时候需要用两个单调栈来求:

以求l[i]为例

首先入栈一个0,并令a[0]=-1,这样可以防止出现空栈

每个下标入栈的时候,将栈顶中所有代表元素比它大的下标弹出,

此时的栈顶下标即是l[i],

然后再将i入栈


最后求a[i]*(sum[r[i]-1]-sum[l[i]])的最大值


#include<cstdio>
#include<stack>
#define INF 0x3f3f3f3f
using namespace std;
int a[100010],l[100010],r[100010];
long long sum[100010];

int main()
{
    int n,i;
    long long ans;
    while(~scanf("%d",&n))
    {
    ans=sum[0]=0;
    a[0]=a[n+1]=-INF;
    stack<int>ss;
    ss.push(0);
    for(i=1;i<=n;i++)
    {
    scanf("%d",&a[i]);
    sum[i]=sum[i-1]+a[i];
    while(a[ss.top()]>=a[i])ss.pop();
    l[i]=ss.top();
    ss.push(i);
    }
    while(!ss.empty())ss.pop();
    ss.push(n+1);
    for(i=n;i>=1;i--)
    {
    while(a[ss.top()]>=a[i])ss.pop();
    r[i]=ss.top();
    ss.push(i);
    ans=ans>a[i]*(sum[r[i]-1]-sum[l[i]])?ans:a[i]*(sum[r[i]-1]-sum[l[i]]);
    }
    printf("%lld\n",ans);
    }
}

PS:这篇题解写的太渣了。。估计不会单调栈的人看了我这篇题解还是不会。。得是会单调栈的人才看得懂。。 大哭

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值