soj 3085 windy's cake V 单调栈的应用

http://acm.scu.edu.cn/soj/problem.action?id=3085
单调栈:
栈与单调性的结合。维护栈顶到栈底为单调增或减。

可应用于求以a[i] 为最值向左(右)扩展的最长长度,该区间内a[i]为最值。

比如该题思路:则要求以a[i] 为最小值的 最长区间,运用一个l[i] 来记录区间的左边界,r[i]来记录区间的右边界。本题维护一个栈顶到栈底递减的单调栈,l[i]为第一个小于a[i] 的元素的下标+1。对于每一个a[i],将栈中比a[i]大的元素都弹出,最后栈顶就是第一个小于a[i]的。之后再将a[i]压入。

单调栈与单调队列的区别:
用途的区别:单调栈用于求以a[i] 为最值向左(右)扩展的最长长度。
单调队列用于求长度为l的区间中的最值。
做法的区别:单调栈栈顶保存着要求区间的边界(也就是第一个比a[i]大或小的值),对于每一个a[i],将栈中比a[i]大的元素都弹出,最后栈顶就是第一个小于a[i]的。之后再将a[i]压入。。
单调队列队头保存着长度为l的区间的最值,每次将比a[i]大或小的一直出队,最后将a[i]入队,并判断队头是否还在区间内,不再则出队。

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <stack>
using namespace std;
#define INF 0x3f3f3f3f
#define M 100009
#define pii pair<int,int>
typedef long long ll;
int ans;
int a[M],l[M],r[M];
ll sum[M];
int main()
{
    int n;
    while(scanf("%d",&n) == 1)
    {
        memset(sum,0,sizeof(sum));
        for(int i = 0;i < n;i++)
        {
            if(i != 0) sum[i] += sum[i-1];
            scanf("%d",&a[i]);
            sum[i] += a[i];
            l[i] = i; //记录左边第一个比a[i]小的下标+1
            r[i] = i; //记录右边第一个比a[i]小的下标-1
        }
        stack<pii> s; //保证栈的单调性,此题为栈顶到栈底单调减
        for(int i = 0;i < n;i++)
        {
            while(!s.empty() && s.top().first >= a[i]) s.pop(); //将栈中比当前元素大的都弹出
            if(!s.empty()) l[i] = s.top().second + 1;
            else l[i] = 0;
            pii p = make_pair(a[i],i);
            s.push(p);
        }
        while(!s.empty()) s.pop();
        for(int i = n-1;i >= 0;i--)
        {
            while(!s.empty() && s.top().first >= a[i]) s.pop();
            if(!s.empty()) r[i] = s.top().second - 1;
            else r[i] = n-1;
            pii p = make_pair(a[i],i);
            s.push(p);
        }
        ll ans = -INF;
        for(int i = 0;i < n;i++)
        {
            ll tmp = (ll)a[i] * (sum[r[i]] - sum[l[i]] + a[l[i]]);
            ans = max(ans,tmp);
        }
        printf("%lld\n",ans);
    }
    return 0;
}
深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值