图像特征提取方法

本文介绍了图像特征提取的三种重要方法:HOG(Histogram of Oriented Gradients)用于捕捉图像中物体的形状信息;LBP(Local Binary Patterns)通过比较像素点灰度值来描述纹理信息;而Haar特征则利用矩形模板评估图像的灰度变化,常用于人脸识别。这三种特征在机器学习和数据挖掘领域有广泛应用。
摘要由CSDN通过智能技术生成
HOG特征
1)主要思想:
       在一副图像中,局部目标的表象和形状(appearance and shape)能够被梯度或边缘的方向密度分布很好地描述。(本质:梯度的统计信息,而梯度主要存在于边缘的地方)。
2)具体的实现方法是:
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值