SVM核函数总结

SVM通过核函数解决低维空间线性不可分问题,将数据映射到高维空间。常见的核函数包括多项式、径向基(高斯)、线性、Sigmoid和复合核函数。其中,高斯核函数能实现无穷维映射,线性核对应于原始特征的内积,Sigmoid核常用于神经网络阈值函数。
摘要由CSDN通过智能技术生成

SVM引入核函数有两个方面的原因,一是为了更好的拟合数据,另一个重要的原因是实现数据的线性可分。

由于一些数据集在低维空间是线性不可分的,SVM通过引入核函数实现了把特征集从低维空间到高维空间的映射。这样在高维空间就能把数据集表示成线性可分的了。

核函数的本质就是一个转换函数,比如将一维的x通过核函数计算后扩展为3维的(x,x^2,x^3)。

常用的核函数有:径向基核函数(高斯核函数),线性核函数,多项式核函数,Sigmoid核函数和复合核函数。

1.多项式核函数

多项式核函数K(x,xi)=(x▪xi+1)^d, d=1,2,...,N;

多项式核函数一般用户可以根据需要自己定义,比较灵活。

比如如果原始内积是<x,z>,映射后为,那么定义核函数为:

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值