方便测试,特放此处
版本:1.0.4
使用新的api
package test;
import java.io.IOException;
import java.util.Iterator;
import java.util.StringTokenizer;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
public class WordCount {
// mapper实现
public static class WordCountMapper extends
Mapper<LongWritable, Text, Text, IntWritable> {
// 计数器
private final static IntWritable one = new IntWritable(1);
// key输出
private Text word = new Text();
protected void map(LongWritable key, Text value, Context context)
throws java.io.IOException, InterruptedException {
String line = value.toString();
StringTokenizer st = new StringTokenizer(line);
while (st.hasMoreTokens()) {
word.set(st.nextToken());
context.write(word, one);
}
};
}
// reduce实现
public static class WordCountReduce extends
Reducer<Text, IntWritable, Text, IntWritable> {
@Override
protected void reduce(Text key, java.lang.Iterable<IntWritable> arg1,
Context context) throws IOException, InterruptedException {
Iterator<IntWritable> iterator = arg1.iterator();
int sum = 0;
while (iterator.hasNext()) {
sum += iterator.next().get();
}
context.write(key, new IntWritable(sum));
};
}
public static void main(String[] args) throws Exception {
// 创建一个job
Configuration conf = new Configuration();
Job job = new Job(conf, "WordCount");
job.setJarByClass(WordCount.class);
// 设置输入输出类型
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
// 设置map和reduce类
job.setMapperClass(WordCountMapper.class);
job.setReducerClass(WordCountReduce.class);
// 设置输入输出流
FileInputFormat.addInputPath(job, new Path("/tmp/a.txt"));
FileOutputFormat.setOutputPath(job, new Path("/tmp/output"));
job.submit();
}
}