Hadoop MapReduce之ReduceTask任务执行(一)

  reduce执行流程经历三个阶段:copy、sort、reduce,在第一阶段reduce任务会把map的输出拷贝至本地,通过线程MapOutputCopier,该线程通过http协议将map输出拷贝至本地,该copy操作可以并行进行,默认情况下有5个线程执行此操作,如果map数量较大时可以适当调大此值,拷贝时使用http协议,此时reducetask为client,map端以jetty作为web服务器。reduce任务的执行与map一样在Child类启动,但在TaskFinal.run(job, umbilical)进入ReduceTask类执行。reduce的过程比较复杂,本节只分析copy部分,最后会分析整个reduce流程,需要注意的是每个reduce只拷贝自己需要处理那个partition数据。

拷贝线程的代码如下:
      /** Loop forever and fetch map outputs as they become available.
       * The thread exits when it is interrupted by {@link ReduceTaskRunner}
       */
      @Override
      public void run() {
        while (true) {        
          try {
            MapOutputLocation loc = null;
            long size = -1;
            //不停查询调度拷贝的集合,如果有数据到来,则说明需要做copy操作
            synchronized (scheduledCopies) {
              while (scheduledCopies.isEmpty()) {
                scheduledCopies.wait();
              }
              //取出第一个输出位置
              loc = scheduledCopies.remove(0);
            }
            CopyOutputErrorType error = CopyOutputErrorType.OTHER_ERROR;
            readError = false;
            try {
              shuffleClientMetrics.threadBusy();
              start(loc);
              //开始读取数据并返回长度,这也是下面代码中要分析的函数
              size = copyOutput(loc);
              //更新统计信息
              shuffleClientMetrics.successFetch();
              error = CopyOutputErrorType.NO_ERROR;
            } catch (IOException e) {
              LOG.warn(reduceTask.getTaskID() + " copy failed: " +
                       loc.getTaskAttemptId() + " from " + loc.getHost());
              LOG.warn(StringUtils.stringifyException(e));
              shuffleClientMetrics.failedFetch();
              if (readError) {
                error = CopyOutputErrorType.READ_ERROR;
              }
              // Reset 
              size = -1;
            } finally {
              shuffleClientMetrics.threadFree();
              //当前连接加入copyResults集合
              finish(size, error);
            }
          } catch (InterruptedException e) { 
            break; // 执行到此步则证明拷贝完成
          } catch (FSError e) {//文件系统错误
            LOG.error("Task: " + reduceTask.getTaskID() + " - FSError: " + 
                      StringUtils.stringifyException(e));
            try {
              umbilical.fsError(reduceTask.getTaskID(), e.getMessage(), jvmContext);
            } catch (IOException io) {
              LOG.error("Could not notify TT of FSError: " + 
                      StringUtils.stringifyException(io));
            }
          } catch (Throwable th) {
            String msg = getTaskID() + " : Map output copy failure : " 
                         + StringUtils.stringifyException(th);
            reportFatalError(getTaskID(), th, msg);
          }
        }
        
        if (decompressor != null) {
          CodecPool.returnDecompressor(decompressor);
        }
          
      }
下面分析copyOutput函数
     /** Copies a a map output from a remote host, via HTTP. 
       * @param currentLocation the map output location to be copied
       * @return the path (fully qualified) of the copied file
       * @throws IOException if there is an error copying the file
       * @throws InterruptedException if the copier should give up
       */
      private long copyOutput(MapOutputLocation loc
                              ) throws IOException, InterruptedException {
        // 检查该位置是否还需拷贝
        if (copiedMapOutputs.contains(loc.getTaskId()) || 
            obsoleteMapIds.contains(loc.getTaskAttemptId())) {
          return CopyResult.OBSOLETE;
        } 
 
        // 内存写满时需要用到的临时文件
        TaskAttemptID reduceId = reduceTask.getTaskID();
        Path filename =
            new Path(String.format(
                MapOutputFile.REDUCE_INPUT_FILE_FORMAT_STRING,
                TaskTracker.OUTPUT, loc.getTaskId().getId()));


        // Copy the map output to a temp file whose name is unique to this attempt 
        Path tmpMapOutput = new Path(filename+"-"+id);
        
        // 开始拷贝map的输出
        MapOutput mapOutput = getMapOutput(loc, tmpMapOutput,
                                           reduceId.getTaskID().getId());
        if (mapOutput == null) {
          throw new IOException("Failed to fetch map-output for " + 
                                loc.getTaskAttemptId() + " from " + 
                                loc.getHost());
        }
        
        // 获得输出尺寸
        long bytes = mapOutput.compressedSize;
        
        // lock the ReduceTask while we do the rename
        synchronized (ReduceTask.this) {
          if (copiedMapOutputs.contains(loc.getTaskId())) {
            mapOutput.discard();
            return CopyResult.OBSOLETE;
          }


          // Special case: discard empty map-outputs
          if (bytes == 0) {
            try {
              mapOutput.discard();
            } catch (IOException ioe) {
              LOG.info("Couldn't discard output of " + loc.getTaskId());
            }
            
            // Note that we successfully copied the map-output
            noteCopiedMapOutput(loc.getTaskId());
            
            return bytes;
          }
          
          // 判断是否完全在内存中,根据具体情况执行不同分支
          if (mapOutput.inMemory) {
            // 如果完全在内存中则放入内存文件的集合中
            mapOutputsFilesInMemory.add(mapOutput);
          } else {
            // Rename the temporary file to the final file; 
            // ensure it is on the same partition
            tmpMapOutput = mapOutput.file;
            filename = new Path(tmpMapOutput.getParent(), filename.getName());
            if (!localFileSys.rename(tmpMapOutput, filename)) {
              localFileSys.delete(tmpMapOutput, true);
              bytes = -1;
              throw new IOException("Failed to rename map output " + 
                  tmpMapOutput + " to " + filename);
            }


            synchronized (mapOutputFilesOnDisk) {        
              addToMapOutputFilesOnDisk(localFileSys.getFileStatus(filename));
            }
          }


          // Note that we successfully copied the map-output
          noteCopiedMapOutput(loc.getTaskId());
        }
        
        return bytes;
      }
  getMapOutput函数负责拷贝输出的工作,利用URLConnection建立连接,url格式类似:http://PC-20130917RGUY:50060/mapOutput?job=job_201311261309_0003&map=attempt_201311261309_0003_m_000000_0&reduce=1 ,包含协议类型:http,主机及端口:PC-20130917RGUY:50060,路径名称:mapOutput,查询参数包含作业名、map任务名、reduce编号:ob=job_201311261309_0003&map=attempt_201311261309_0003_m_000000_0&reduce=1
url会根据这个地址建立连接,并打开一个输入流读取数据。在开始读取前会判断本次的读取是否能全部放入缓存中,这部分缓存使用是有限制的:jvm_heap_size × mapred.job.shuffle.input.buffer.percent × MAX_SINGLE_SHUFFLE_SEGMENT_FRACTION,其中jvm_heap_size可以通过mapred.job.reduce.total.mem.bytes来设置,如果没设置则通过Runtime.getRuntime().maxMemory()来获取,可以通过mapred.child.opts来影响jvm堆的大小,mapred.job.shuffle.input.buffer.percent可以在参数文件中设置,默认为0.7,MAX_SINGLE_SHUFFLE_SEGMENT_FRACTION在当前版本中为一常量值0.25,也就是说加入我们指定jvm堆大小为1024M,那么一个ReduceTask在拷贝时用到的缓存为1024×0.7×0.25=179M,当我们的map输出大于179M时,则直接写入文件.

  private MapOutput getMapOutput(MapOutputLocation mapOutputLoc, 
                                 Path filename, int reduce)
  throws IOException, InterruptedException {
    // 建立url连接
    URL url = mapOutputLoc.getOutputLocation();
    URLConnection connection = url.openConnection();
    
    InputStream input = setupSecureConnection(mapOutputLoc, connection);


    // 校验任务ID
    TaskAttemptID mapId = null;
    try {
      mapId =
        TaskAttemptID.forName(connection.getHeaderField(FROM_MAP_TASK));
    } catch (IllegalArgumentException ia) {
      LOG.warn("Invalid map id ", ia);
      return null;
    }
    TaskAttemptID expectedMapId = mapOutputLoc.getTaskAttemptId();
    if (!mapId.equals(expectedMapId)) {
      LOG.warn("data from wrong map:" + mapId +
          " arrived to reduce task " + reduce +
          ", where as expected map output should be from " + expectedMapId);
      return null;
    }
    //判断返回数据长度是否异常
    long decompressedLength = 
      Long.parseLong(connection.getHeaderField(RAW_MAP_OUTPUT_LENGTH));  
    long compressedLength = 
      Long.parseLong(connection.getHeaderField(MAP_OUTPUT_LENGTH));


    if (compressedLength < 0 || decompressedLength < 0) {
      LOG.warn(getName() + " invalid lengths in map output header: id: " +
          mapId + " compressed len: " + compressedLength +
          ", decompressed len: " + decompressedLength);
      return null;
    }
    //判断reduce编号是否相同
    int forReduce =
      (int)Integer.parseInt(connection.getHeaderField(FOR_REDUCE_TASK));
    
    if (forReduce != reduce) {
      LOG.warn("data for the wrong reduce: " + forReduce +
          " with compressed len: " + compressedLength +
          ", decompressed len: " + decompressedLength +
          " arrived to reduce task " + reduce);
      return null;
    }
    if (LOG.isDebugEnabled()) {
      LOG.debug("header: " + mapId + ", compressed len: " + compressedLength +
          ", decompressed len: " + decompressedLength);
    }


    //We will put a file in memory if it meets certain criteria:
    //1. The size of the (decompressed) file should be less than 25% of 
    //    the total inmem fs
    //2. There is space available in the inmem fs
    
    // 判断拷贝的数据能否完全放入内存中,内存计算公式为: JVM堆尺寸×mapred.job.shuffle.input.buffer.percent(0.7)× 1/4


    boolean shuffleInMemory = ramManager.canFitInMemory(decompressedLength); 


    // Shuffle
    MapOutput mapOutput = null;
    if (shuffleInMemory) {
      if (LOG.isDebugEnabled()) {
        LOG.debug("Shuffling " + decompressedLength + " bytes (" + 
            compressedLength + " raw bytes) " + 
            "into RAM from " + mapOutputLoc.getTaskAttemptId());
      }
			//如果可以放入内存,则放入新建立的byte buffer中
      mapOutput = shuffleInMemory(mapOutputLoc, connection, input,
                                  (int)decompressedLength,
                                  (int)compressedLength);
    } else {
      if (LOG.isDebugEnabled()) {
        LOG.debug("Shuffling " + decompressedLength + " bytes (" + 
            compressedLength + " raw bytes) " + 
            "into Local-FS from " + mapOutputLoc.getTaskAttemptId());
      }
      //内存中放不下则放入磁盘中
      mapOutput = shuffleToDisk(mapOutputLoc, input, filename, 
          compressedLength);
    }
        
    return mapOutput;
  }
如果内存足够大,则copy过来的数据直接放入内存中,首先会分配一个byte数组,然后从上面建立的输入流冲取得所需数据。
  private MapOutput shuffleInMemory(MapOutputLocation mapOutputLoc,
                                    URLConnection connection, 
                                    InputStream input,
                                    int mapOutputLength,
                                    int compressedLength)
  throws IOException, InterruptedException {
    // 判断是否有足够内存存放数据,如果没有则等待内存刷新,
    //刷新内存前会讲输入流置空,所以在这个函数返回为false时需要重新连接,刷新数据时会唤醒内存合并线程
    boolean createdNow = ramManager.reserve(mapOutputLength, input);
  
    //是否需要重新连接
    if (!createdNow) {
      // Reconnect
      try {
        connection = mapOutputLoc.getOutputLocation().openConnection();
        input = setupSecureConnection(mapOutputLoc, connection);
      } catch (IOException ioe) {
        LOG.info("Failed reopen connection to fetch map-output from " + 
                 mapOutputLoc.getHost());
        
        // Inform the ram-manager
        ramManager.closeInMemoryFile(mapOutputLength);
        ramManager.unreserve(mapOutputLength);
        
        throw ioe;
      }
    }
		//包装输入流
    IFileInputStream checksumIn = 
      new IFileInputStream(input,compressedLength);


    input = checksumIn;       
  
    // Are map-outputs compressed?
    if (codec != null) {
      decompressor.reset();
      input = codec.createInputStream(input, decompressor);
    }
  
    // 创建buffer,从输入流读取并填充
    byte[] shuffleData = new byte[mapOutputLength];
    MapOutput mapOutput = 
      new MapOutput(mapOutputLoc.getTaskId(), 
                    mapOutputLoc.getTaskAttemptId(), shuffleData, compressedLength);
    
    int bytesRead = 0;
    try {
    	//循环读取流冲数据至缓存中
      int n = input.read(shuffleData, 0, shuffleData.length);
      while (n > 0) {
        bytesRead += n;
        shuffleClientMetrics.inputBytes(n);


        // indicate we're making progress
        reporter.progress();
        n = input.read(shuffleData, bytesRead, 
                       (shuffleData.length-bytesRead));
      }


      if (LOG.isDebugEnabled()) {
        LOG.debug("Read " + bytesRead + " bytes from map-output for " +
            mapOutputLoc.getTaskAttemptId());
      }
			//数据读取完毕则关闭输入流
      input.close();
    } catch (IOException ioe) {
      LOG.info("Failed to shuffle from " + mapOutputLoc.getTaskAttemptId(), 
               ioe);


			.....
    }


    // 关闭内存文件,并唤醒内存合并线程
    ramManager.closeInMemoryFile(mapOutputLength);


    // 校验数据读取长度
    if (bytesRead != mapOutputLength) {
      // Inform the ram-manager
      ramManager.unreserve(mapOutputLength);
      
      // Discard the map-output
      try {
        mapOutput.discard();
      } catch (IOException ignored) {
        // IGNORED because we are cleaning up
        LOG.info("Failed to discard map-output from " + 
                 mapOutputLoc.getTaskAttemptId(), ignored);
      }
      mapOutput = null;


      throw new IOException("Incomplete map output received for " +
                            mapOutputLoc.getTaskAttemptId() + " from " +
                            mapOutputLoc.getOutputLocation() + " (" + 
                            bytesRead + " instead of " + 
                            mapOutputLength + ")"
      );
    }
		.....
    return mapOutput;
  }
如果内存过小不能存放本次读取的数据则直接写入磁盘文件中,我们会在相关目录中看到这个文件如:C:/hadoop/tasklog/taskTracker/hadoop/jobcache/job_201311281345_0001/attempt_201311281345_0001_r_000001_1/output/map_0.out-0
private MapOutput shuffleToDisk(MapOutputLocation mapOutputLoc,
                                      InputStream input,
                                      Path filename,
                                      long mapOutputLength) 
      throws IOException {
        // 构建本地文件系统文件名
        Path localFilename = 
          lDirAlloc.getLocalPathForWrite(filename.toUri().getPath(), 
                                         mapOutputLength, conf);
				//创建基于磁盘文件的MapOutput
        MapOutput mapOutput = 
          new MapOutput(mapOutputLoc.getTaskId(), mapOutputLoc.getTaskAttemptId(), 
                        conf, localFileSys.makeQualified(localFilename), 
                        mapOutputLength);




        // 开始数据拷贝
        OutputStream output = null;
        long bytesRead = 0;
        try {
          output = rfs.create(localFilename);
          //讲map输出直接写入磁盘时分配的缓存,固定64K
          byte[] buf = new byte[64 * 1024];
          int n = -1;
          try {
            n = input.read(buf, 0, buf.length);
          } catch (IOException ioe) {
            readError = true;
            throw ioe;
          }
          while (n > 0) {
            bytesRead += n;
            shuffleClientMetrics.inputBytes(n);
            output.write(buf, 0, n);


            // indicate we're making progress
            reporter.progress();
            try {
              n = input.read(buf, 0, buf.length);
            } catch (IOException ioe) {
              readError = true;
              throw ioe;
            }
          }


          LOG.info("Read " + bytesRead + " bytes from map-output for " +
              mapOutputLoc.getTaskAttemptId());


          output.close();
          input.close();
        } catch (IOException ioe) {
          LOG.info("Failed to shuffle from " + mapOutputLoc.getTaskAttemptId(), 
                   ioe);


          // Discard the map-output
          try {
            mapOutput.discard();
          } catch (IOException ignored) {
            LOG.info("Failed to discard map-output from " + 
                mapOutputLoc.getTaskAttemptId(), ignored);
          }
          mapOutput = null;


          // Close the streams
          IOUtils.cleanup(LOG, input, output);


          // Re-throw
          throw ioe;
        }


        // 读取数据后的检测
        if (bytesRead != mapOutputLength) {
          try {
            mapOutput.discard();
          } catch (Exception ioe) {
            // IGNORED because we are cleaning up
            LOG.info("Failed to discard map-output from " + 
                mapOutputLoc.getTaskAttemptId(), ioe);
          } catch (Throwable t) {
            String msg = getTaskID() + " : Failed in shuffle to disk :" 
                         + StringUtils.stringifyException(t);
            reportFatalError(getTaskID(), t, msg);
          }
          mapOutput = null;


          throw new IOException("Incomplete map output received for " +
                                mapOutputLoc.getTaskAttemptId() + " from " +
                                mapOutputLoc.getOutputLocation() + " (" + 
                                bytesRead + " instead of " + 
                                mapOutputLength + ")"
          );
        }


        return mapOutput;


      }
      
    } // MapOutputCopier


评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值