数学-e的自然之美

本文介绍了数学常数e在利息、对数历史、微积分以及自然界中的应用。e不仅是超越数,还与对数螺线紧密相关,这种螺线在自然界中广泛存在,如台风、花朵的形态。文章还提供了C代码实现斐波那契数列,揭示了数学在现实世界中的奇妙联系。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录:

一、前言

二、利息中的e

1、e如何被发现

2、e的流行定义

3、e的通俗解释

4、利息的逆运算

三、对数发明的历史

四、微积分中的e

五、自然界中的对数螺线

六、C代码输出斐波那契数列


一、前言

现代我们知道,没有受过基础数学教育的人要想理解这些数,不仅需要了解更复杂的概念模型,还要熟悉加、减、乘、除等运算方法,只有这样才能完全明白。而更复杂的数,例如无理数、代数数和超越数,也需要了解更复杂的运算。形如下面的式子,竟然-1与e^(iπ)存在着如此的关系,是不是很神奇!?

推导过程:数学的精美4、欧拉公式推导

今天我们的主角就是这个超越数e,既然理解e的含义需要理解相关的运算,而这些运算最早都和利息有关。

二、利息中的e

1、e如何被发现

常数e是一个数学中非常重要的常数,它与自然对数的底数相同,约为2.71828。它最初由数学家约翰·纳皮尔在研究复利时发现,可以表示连续复利的极限情况。

随后,欧拉在研究无穷级数时又发现了e的重要性,称之为“自然对数的底数”,因为它在求对数时出现得特别频繁,具有一些非常有用的性质。

2、e的流行定义

图片来自:Common Definitions of e (Colorized)

其中,Max compounded growth下面的“3、e的通俗解释”有详细的描述,Infinite Series见微积分基础-微分篇之“8、泰勒Taylor公式及其应用”,Inverse of ln(x)推导如下:

3、e的通俗解释

e和圆周率π都是超越数,π的含义可以通过下图的割圆术来很形象的理解。π(C = πd→π = C/d)是所有圆共享的周长和直径之间的比率,它是所有圆固有的基本比率;e是所有持续增长过程共享的基本增长率

假设等边形的对角线长为1,只要等边形的边足够多,算出来的周长就可以越来越接近圆周率π。

但是解释e的含义却很难找到这样直观的例子,阮一峰翻译的文章《数学常数e的含义》说的很好。

某种类的一群单细胞生物每24小时全部分裂一次。在不考虑死亡与变异等情况下,那么很显然,这群单细胞生物的总数量每天都会增加一倍。据此我们可以写出它的增量公式:growth = 2x(x表示天数)。

这个式子可以改写成:growth = (1+100%)*x 其中,1表示原有数量,100%表示单位时间内(24小时)的增长率。

根据细胞生物学,每过12个小时,也就是分裂进行到一半的时候,平均会新产生一半原数量的新细胞,新产生的细胞在之后的12小时内已经在分裂了。

因此一天24个小时可以分成两个阶段,每一个阶段的细胞数量都在前一个阶段的基础上增长50%,列出数学表达式:

亦即:

/gkimage/uw/dx/dz/uwdxdz.png

即在一个单位时间内,这些细胞的数量一共可以增至为原数量的2.25倍。

倘若这种细胞每过8小时就可以产生平均1/3的新细胞,新生细胞立即具备独立分裂的能力,那就可以将1天分成3个阶段,在一天内时间细胞的总数会增至:

/gkimage/cu/hb/iq/cuhbiq.png

即最后细胞数扩大为原数量的2.37倍。

实际上,这种分裂现象是不间断、连续的,每分每秒产生的新细胞,都会立即和母体一样继续分裂,一个单位时间(24小时)最多可以得到多少个细胞呢?答案是:

/gkimage/k1/lj/i3/k1lji3.png

当增长率为100%保持不变时,在单位时间内细胞种群最多只能扩大2.71828倍。数学家把这个数就称为e,它的含义是单位时间内,持续的翻倍增长所能达到的极限值

所以e的数学表达式如下图,来源于:An Intuitive Guide To Exponential Functions & e

有了这个值以后,计算银行的复利就非常容易。

假定有一家银行,每年的复利是100%,请问存入100元,一年后可以拿多少钱?

答案是:

/gkimage/sl/5a/eo/sl5aeo.png

但是事实上,存储利息没有这么高,如果复利率只有5%,那么100元存一年可以拿到多少钱呢:

/gkimage/is/4d/cr/is4dcr.png

我们知道,在100%利率的情况下,n = 1000时,下式的值非常接近e:

/gkimage/sf/wm/oq/sfwmoq.png

为了便于思考,取n = 50:

/gkimage/71/vg/cc/71vgcc.png

当利率是5%时,存款增长率就相当于e的20分之一次方:

/gkimage/qs/ke/ku/qskeku.png

1/20正好等于5%,所以我们可以把上式改写成:

/gkimage/g7/r2/tt/g7r2tt.png

rate表示利率。

再考虑时间因素,如果存款年限t年,那么存款最终增长率为:

/gkimage/cs/5o/6m/cs5o6m.png

这说明e可以用于任何连续不断的复合式增长率的计算,而上式也是这个增长率的通用计算公式

带着这个结论再回到上面的例子。如果银行的利率是5%的复利,求解100元存款翻倍需要多少时间就等价于解下面的方程:

/gkimage/o5/1p/qp/o51pqp.png

计算结果得13.86年,即:

/gkimage/wt/d6/r8/wtd6r8.png

可以看出:用72除以增长率就是翻倍的大致时间,这正是著名的72定律

在原文《An Intuitive Guide To Exponential Functions & e》中找到了e的更直观的图,只要理解了这个例子,e的含义也就明白了。

假设你在银行存了1元钱(下图蓝圆),很不幸同时又发生了严重的通货膨胀,银行存款利率达到了逆天的100%!

银行一般1年才付一次利息,根据下图,满1年后银行付给你1元利息(绿圆),存款余额 = 2元

银行发善心,每半年付利息,你可以把利息提前存入,利息生利息(红圆),1年存款余额 = 2.25元。

假设银行超级实在,每4个月就付利息,利息生利息(下图红圆、紫圆),年底的余额 ≈ 2.37元。

假设银行人品爆发,一年365天,愿意天天付利息,这样利滚利的余额 ≈ 2.71456748202元。

假设银行丧心病狂的每秒付利息,你也丧心病狂的每秒都再存入,1年共31536000秒,利滚利的余额 ≈ 2.7182817813元。

这个数越来越接近于e了!哎呀!费了半天劲也没多挣几个钱啊!

对!1元存1年,在年利率100%下,无论怎么利滚利,其余额总有一个无法突破的天花板,这个天花板就是e,有兴趣可以用这个网上计算器算一下。

类似的规律,在自然界中随处可见,也不止动物生长的细胞分裂、利息计算,植物生长、人口的增长、放射性衰变等也一样,所以就叫自然底数了。

我们和圆周率再做个对比:

  • 多边形的边数和利滚利的次数是相似的。
  • 对角线为1的n边等边形,n趋于无穷,周长就无限接近于π,即π是周长的最大值。
  • 年利率为1(100%)的1元存款,利滚利的次数n趋于无穷,存款就无限接近e,即e是存款的最大值。

换种表述方法:

  • 每个完美的圆,其周长都是π的倍数;
  • 每个理想的存款,其余额都是e的倍数。

这里停一停,你好好体会一下。

按照自然的观点,如果圆是最美的,那最赚钱也是最理想的。

有人问了:为啥银行不每秒返利息呢?这样就不是100%回报率,而是171.8%了,还我的71.8%!

银行哭到:臣妾做不到啊!!!以上是意淫,银行不会这样发利息,洗洗睡吧。

4、利息的逆运算

还是从一个虚构的故事开始:

  • 有一土豪要去银行存入大额存款,比如存1元。
  • 银行经理推荐他投资理财产品,因为年利率高达100%,按照指数运算,bla bla bla……
  • 但土豪的数学只有小学水平,听不懂有点烦,就问投资多长时间才能到10倍,100倍,1000倍?
  • 经理有点懵,土豪不按常理出牌啊!
  • 一般人都是根据存款时间问收益,例如收益第1年多少、第2年多少、第3年多少……
  • 土豪居然逆向思维,根据收益问时间,多少年2倍,多少年5倍,多少年10倍!
  • 不愧是老板,不问过程,只问结果!
  • 于是经理就从第1年开始算,把10年内每年的收益都算出来,列成一个收益列表,如下图:

  • 然后再找出收益最接近10倍,100倍,1000倍的年份指给土豪。
  • 土豪一看第4年、第7年、第10年就肯定超过预期收益,非常高兴!

经理用这张表查找收益,再找到最接近收益的大体年份的过程,就是利息的逆运算,是最简单的对数运算,这个表就是对数表的雏形。

其实这和我们根据加法表进行减法运算、根据乘法表进行除法运算是同一个道理。

例如知道了3×7 = 21,就可以很快知道21÷3 = 7的除法逆运算结果了。好了,放松一下大脑,继续回来穿越历史。

三、对数发明的历史

据说4000多年前,古巴比伦时代的人们就发明对数和对数表了,但因为我没找到资料证实,只能从近代开始。

16、17世纪,英、法加入了大航海的行列,开始了美洲殖民地的开拓,远洋贸易变得日益频繁。那时的人们已经知道地球是球形,大海上船只的位置靠经纬度来确定。

纬度测定很容易,几千年前人们就知道,通过测量北极星的仰角,可以估算出船已经在南北方向航行了多远。但是经度的测量不是一般的困难。在茫茫的大洋上,如果无法准确测定船只的经度,代价会极为高昂。

经度的精确测量问题直到18世纪才得到有效解决,这归功于约翰·哈里森发明了高精度机械钟表。这段历史还被拍成了电影和记录片,推荐一本精彩的书《经度:一个孤独的天才解决他所处时代最大难题的真实故事》和罗辑思维的节目《击溃牛顿的钟表匠》。

但是在哈里森之前的数百年里,人们只能求助于天文学家来解决,因为天空就是人们最早、最精确的钟表,太阳、月亮、星星等天体就是上面的表针,读懂这个钟表,就可以知道时间和经度了。

天文学家观测天体,计算出运行的轨道,来预测未来几年每个时间点上天体所在的精确位置,英国天文学家以格林尼治天文台的时间为基准,再把时间和天体位置整理成详细的表格,公开出版发行。这套星表可不便宜,星表加上六分仪售价约20英镑,相当于现在2万人民币,即便这样也经常脱销。海上的人用六分仪测量天体,再去查那本高价天文表格,求得当地时间和格林尼治时间,知道两地的时间差,就知道现在的经度了。

16世纪和17世纪之交,天文学家第谷和开普勒通过大量的观测,绘制了当时最精确的星图,解决了天文学家天文数据精度不足的难题。有了高精度的星图,全欧洲的数学家开始了天体轨道的计算竞赛,很多科学家也因此获得了商业和学术上的丰厚回报。那时的天文学家、数学家可不是像现代这么冷门,更像当今那些IT、金融等热门行业里的精英一样,享受着人人羡慕的不菲高薪。

顺便说一下,日心说之所以能取代地心说,也是因为日心说模型更简洁,不仅计算起来更简单,而且预测非常准确,可以很好的解释行星逆行等现象,这是地心说完全做不到的。

即使这样,要想预测天体的运行,其计算也是极其繁琐和浩瀚的,在解决计算问题时,数学家们发明了大量崭新的数学理论和计算工具,包括对数、解析几何、微积分和牛顿力学等伟大的创新。可以说天文学是当时科学界最闪亮的宝石,是当时的高科技热门产业。其中,对数的发明人就是约翰·纳皮尔

纳皮尔是天文学家、数学家,在计算轨道数据时,也被浩瀚的计算量所折磨。

看起来在数学实践中,最麻烦的莫过于大数字的乘法、除法、开平方和开立方,计算起来特别费事又伤脑筋,于是我开始构思有什么巧妙好用的方法可以解决这些问题。

--约翰·纳皮尔,《奇妙的对数表的描述》(1614)   《e的故事:一个常数的传奇 》

但纳皮尔不是一般人,不想像IT民工一样苦逼的重复劳动,于是用了20年的时间,进行了数百万次的计算,发明了对数和对数表,堪称学霸中的战斗机。

为了理解对数计算的优势,我们通过案例来说明,下面的表格里有两个数列:

第1行是自然数,他们是等差的;

第2行是2的倍数,他们是等比的;

要计算第2行的等比数列中任意两个数的乘积,例如16x64;

先到第1行的等差数列,寻找对应的数,16对应4,64对应6;

然后做加法,4+6 = 10,再查找10所对应等比数列的1024;

得到计算结果就是16x64 = 1024

借助这个表,仅靠心算就可以用4+6 = 10的加法,完成麻烦的16×64乘法。

同样也可以进行除法变减法的运算,把1024/128,变为10-7 = 3,对应结果为8。

把这个表变的更长,就可以计算数值更大的乘法,这个表就是极度简化的对数表。

把直尺掰弯了就成了柱状算尺,像不像风水大师的道具?

四、微分中的e

有人说:我不懂微积分,估计看不懂!没关系!你可以这样理解,积分是升维的过程,微分是降维的过程。

例如

把一张张纸叠起来变成厚厚的词典,这是从2维变成3维的升维,这是积分;

把一大块羊肉,切成一片片羊肉片,就是从3维为变2维的降维,这是微分。

在微积分中,底数为e的指数函数e^x,其导数还是这个函数e^x,也就是不论求多少次导数,其导数就像一个常量一样永远是恒定的。不知道别人的感觉如何,反正我第一次知道时是很惊奇的。

举个例子:

西瓜都切过吧?

无论你怎么切一个实心球,其横截面都是圆面,也就是3维降2维,还是和圆有关。

2维的圆面也是有很多1维的同心圆组成,也就是2维降1维,还是和圆有关。

如上所说,球被降维了2次还是和圆有关,π这个常数你是甩不掉的。

这一点对更高维度的球也适用,参见n维球面

e^x也是这样,而且比球面更厉害。无论如何降维,e^x总是老样子,一点儿都没变!

就好像你切掉孙悟空的一部分,你以为是一小片肉,睁眼一看,居然是另一个孙悟空,而且一样大!

这种自相似或全息性太匪夷所思、太好玩儿了!大刘!我知道怎么化解《三体》外星人的降维攻击了!

下面就是e^x在直角坐标系中的样子

美妙的螺线

在上面的部分中,指数函数e^x的美并没有真正的体现出来。让我们换一个视角看,你一定会大吃一惊。

我们知道二维坐标系除了直角坐标系外,还有一种常用的是极坐标系,如下图所示。

我们把指数函数e^x换成极坐标,就变成了e^θθ是点与极轴的夹角。

这时的指数函数就会变成下图的样子,这个螺线叫对数螺线(Logarithmic spiral),又叫等角螺线

之所以叫等角螺线,是因为在极坐标中,螺线和射线的夹角始终是一个固定夹角,如下图所示,蓝线每次穿过射线时,其夹角是固定的,也就是等角,我们在后面会用到这个等角特性。

斐波那契数列就是1,1,2,3,5,8,13,21,34,55,89……这样的数列。

其特点是前两个数加起来就是下一个数,例如

1+1 = 2

1+2 = 3

2+3 = 5

……

34+55 = 89

……

用这些数画出来的半圆,可以拼接成下面的螺线形状,这就是斐波那契螺线。

有趣的是这个数列还和黄金比例有关,例如55/34 ≈ 1.6176,接近黄金分割比例1.618,数列的数字越到后面,结果就越趋近于黄金分割这个无理数,如下图

不过斐波那契螺线仅仅是对一种叫黄金螺线(Golden spiral)的近似,黄金螺线是一种内涵黄金分割比例的对数螺线e^θ,下图红色的才是黄金曲线,绿色的是“假黄金螺线”(斐波那契螺线),近似却不重合。

很多科学家发现对数螺线e^θ在自然界中广泛存在。从大如星系、台风,到小如花朵、海螺……宇宙中到处都是对数螺线e^θ的身影。

原来e以这种特殊的方式隐藏在自然之中。需要注意的是,这不是e被称为自然底数的原因,这和大自然没太大关系。

五、自然界中的对数螺线

因为对数螺线具有等角性,受环境影响,很多直线运动会转变为等角螺线运动。

我们以飞蛾扑火为例:

亿万年来,夜晚活动的蛾子等昆虫都是靠月光和星光来导航,因为天体距离很远,这些光都是平行光,可以作为参照来做直线飞行。如下图所示,注意蛾子只要按照固定夹角飞行,就可以飞成直线,这样飞才最节省能量。

但自从该死的人类学会了使用火,这些人造光源因为很近,光线成中心放射线状,可怜的蛾子就开始倒霉了。

蛾子还以为按照与光线的固定夹角飞行就是直线运动,结果越飞越坑爹,飞成了等角螺线,最后飞到火里去了,这种现象还被人类称为昆虫的正趋光性。

蛾子说:趋你妹的光啊,傻瓜才瞪着光飞,不知道会亮瞎眼啊?!!

我们完全被人类误导了,亿万年才演化出的精妙直线导航方法,被人类的光污染干扰失效了!

不用假慈悲的飞蛾扑火纱罩灯了,赶紧把灯关了吧!

注意下图飞虫都在做螺线飞行,如果昆虫有趋光性。直飞不是更好吗?

不要以为只有蛾子会这样,人在用指南针导航时也有同样的问题,因为篇幅太长就不展开了,有兴趣请移步《既然昆虫有趋光性,为什么昆虫不齐刷刷地奔向太阳?》。

根本原因是原来作为参考的平行场变成了中心发散的场,导致直线运动变成了螺线运动。

我们也知道,绝对平行的场在自然界中是不存在的,只是我们为了计算方便,在小范围内近似认为平行而已。如果把尺度放大了看,更多的场是不平行的、是发散的,所以自然界中大量存在等角螺线现象就很正常了。

例如理想状态下,流体应该是直线运动的,但在发散场和地球自转的作用下,就会像飞蛾一样走出类似等角螺线的形状,天上的台风和水中的漩涡就是这样形成的,不过实际情况远比这要复杂,只能近似这样考虑。

六、C代码输出斐波那契数列

#include "stdio.h"

void fobanacci(int n);
int main(void)
{
  int n;
  printf("输入你所要的斐波那契数项数(输入任何字母退出):");
  while(scanf("%d",&n)==1)
  {
    if(n<1)
      printf("\n请输入大于0的整数\n");
    else if(n>50)
        printf("\n请输入小于51的整数\n");
    else
    {
        printf("\n你得到的斐波那契数列如下:\n0\n");
        fobanacci(n);
    }
    putchar('\n');
    printf("输入你所要的斐波那契数项数(输入任何字母退出):");
  }
  printf("拜拜!\n");
  return 0;
}

void fobanacci(int n)
{
  int f1=0,f2=1,f3=0,i;

  for(i=1;i小于n;i++)
  {
    f3=f1+f2;
    f1=f2;
    f2=f3;
    printf("%d\n",f3);
  }
  return;
}

人间有味是清欢,诗酒趁年华。觉得不错,动动发财的小手点个赞哦! 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

爱上电路设计

你的鼓励是我创作最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值