数学的精美

内容包括行列式求解(含行列式C代码),电子信息工程虚数直观图解,三角函数应用实例,Matlab求定积分与不定积分,多个公式推导等。紫色文字是超链接,点击自动跳转至相关博文。持续更新,原创不易!

目录:

一、行列式与克莱姆法则

1、前言

2、定义行列式的目的

3定义行列式的思路

4低阶行列式

1)二阶行列式    2)三阶行列式

5行列式的定义

1)全排列    2)逆序数    3)定义三阶行列式   4)n阶行列式的定义

6、克法则

1)二元与三元方程组的规律    2)克莱姆法则的定义

7、行列式C代码

二、虚数的直观图解

1、前言

2、什么是虚数

3、虚数的定义

4、虚数的作用:加法

5、虚数的作用:乘法

1)例1、船的航向    2)例2、计算复功率

6、虚数乘法的数学证明

三、三角函数

1、求圆的半径

1)破碎的圆片   2)确定PCB的圆弧

2、辅助角

3、求解单摆高度差

四、Matlab求定积分与不定积分

1、Matlab求不定积分

2、Matlab求定积分

五、公式推导

1、三角形、梯形面积推导

2、球形面积推导

1)圆的面积   2)球形面积   3)平方反比定律★

3、一元二次方程根推导

4、欧拉公式推导

1)欧拉公式的由来   2)欧拉公式的变换   3)欧拉公式的图形

5、算数平均值≥几何平均值


前置知识:数学-线性代数你也能懂的微积分


一、行列式与克莱姆法则

1、前言

行列式是线性变换的伸缩因子,数学-线性代数


本文想谈的是行列式在历史中是怎么演变出来的,主要以下几个问题:

  • 定义行列式的目的是什么?
  • 行列式出现的思路是什么?
  • 为什么用“全排列”、“逆序数”这么晦涩的名词来定义行列式?

2、定义行列式的目的

历史上,定义行列式的目的就是为了解线性方程组。

下面这个方程组:

从几何上来讲,两个方程都是直线,解就是它们的交点:

通过高斯消元法可以得到唯一解:

一般的,对于二元一次线性方程组:

如果它有唯一解,那么通过高斯消元法容易得到:

对于三元一次线性方程组:

如果它有唯一解,同样可以通过高斯消元法得到:

n 元一次线性方程组的解可想而知,会更加复杂。

简化n元一次线性方程组的解,找出其中的规律,在这个过程中产生了行列式。

3、定义行列式的思路

有点像经常说的,大胆假设、小心求证。下面我们来看看这一过程。

4、低阶行列式

1)二阶行列式

(1)定义

二阶行列式是这么定义的,交叉相乘,之后相减:

(2)验证

再看看刚才的二元一次方程组的解:

它的解的分母都是:

套用刚才定义的二阶行列式的符合和规则可以得到:

分子可以分别表示为:

则线性方程的解表示为:

经过验证,这样定义二阶行列式是合理的,可以达到我们预设的解线性方程组的目的。

-------------------------------

2)三阶行列式

(1)定义

比较复杂,可以靠对角线法则进行记忆:

(2)验证

有了三阶行列式的定义,则三元方程组的解:

可以通过三阶行列式来表示:

求解类似于第一个图:

经过验证,这样定义三阶行列式也是合理的。

5、行列式的定义

n 阶行列式应该怎么定义?

具体的过程肯定是,数学家们(应该是凯莱、范德蒙这些先驱)废了无数草稿纸,反复验算各阶线性方程组,从中总结出来的。

为了介绍行列式的定义,先引入两个概念。

-----------------------------------------

1)全排列

有如下三个数字:1,2,3

总共有以下6种不重复的排列方式:

1,2,3      1,3,2      2,1,3

2,3,1      3,1,2      3,2,1

这就是全排列。

把 n 个不同的元素排成一列,叫做这 n 个元素的全排列(简称排列)。

再举个例子,如下四个数字:1,2,3,4

总共有以下 24 种不重复的排列方式,可以自行验算。

-------------------------------

2)逆序数

比如有这么一个数列:3,2,5,4,1

规定:从小到大为正序,否则为逆序

比如:

上图中可以看出,没有一个逆序的,因为 5 是第三个数字,所以用下列的负号来表示没有逆序:t3 = 0

再比如:

数列内所有的逆序数为:

逆序数定义为:

在一个排列中,如果一对数的前后位置与大小顺序相反,即前面的数大于后面的数,那么它们就称为一个逆序。 一个排列中逆序的总数就称为这个排列的逆序数。

再比如数列:3,1,4,5,2

数列的逆序数为 4,可以自行验证。

-------------------------------

3)定义三阶行列式

通过全排列逆序数,就可以定义行列式了。

以三阶行列式为例:

来观察每一项的脚标,脚标第一项都是按照 “1,2,3” 排列的:

而脚标的第二项是 “1,2,3” 的全排列:

正负号怎么来的呢?是由逆序数决定的:

整个过程为:

三阶行列式可以定义为:

这种定义方式和之前的对角线定义方式得到的结果是一样的,但是可以推广到 n 阶。

-------------------------------

4)n阶行列式的定义

6、克莱姆法则★

那么上面的 n 阶行列式的定义是否合适?我们用克莱姆(又译作克拉默)法则来验收。加百列·克莱姆,瑞士数学家,他发现了可以通过行列式解线性方程组的克拉法则(Cramer's Rule),让行列式成为数学界的共识,是行列式的历史源头。其应用移步:热敏电阻温度检测-分段曲线拟合2、分段曲线拟合

下面从具体的二元、三元一次方程组说起。

-------------------------------

1)二元与三元方程组的规律

观察二元方程组的解:

再观察三元方程组的解:

可以看到如下规律:

  • 分母都是系数组成的行列式
  • 分子也是系数组成的行列式,只是对应于不同的 xi,第i列被替换为了常数项

推广到 n 元线性方程组的话,就是克莱姆法则。

-------------------------------

2)克莱姆法则的定义

从 n 阶行列式的定义出发可以证明:

这就说明行列式的定义是成功的(从行列式的定义出发,需要先证明几个行列式的性质,然后证明克拉默法则,这里就不引用了)。

为什么要用“全排列”、“逆序数”这么晦涩的名词来定义行列式?完全是因为只有这样定义,克拉默法则才能成立。

7、行列式C代码

#include "stdio.h"

#include "stdlib.h"

#define MAX 9  //定义最大为9阶行列式
int Fun(int n, int a[MAX][MAX]); //函数声明

int main(void)
{
    int n = 0;  //初始化阶数n
    int i = 0, j = 0;  //i,j分别表示行与列
    int a[MAX][MAX] = {{0}};  //定义行列式
    
    printf("Please input order of determinant,end with a return!");
    printf("\n");
    scanf("%d",&n); //读入阶数

    while(n != 0)  //输入为0时退出程序
    {
        for(i = 0; i < n; i++) //此处2次循环将行列式存入数组中
        {
            for(j = 0; j < n; j++)
                scanf("%d", &a[i][j]);
        }
        printf("Value=%d\n", Fun(n, a));
        scanf("%d", &n);
    }
    return 0;
}

//以下为计算行列式值的递归函数
int Fun(int n, int a[MAX][MAX])
{
    int b[MAX][MAX] = {{0}}; //定义数组b并初始化
    int i = 0, j = 0, sum = 0; //i,j为行与列,sum为行列式的值
    int x = 0,c = 0,p=0; //用x判断加与减,c,p为中间变量
    
    if(n == 1)
        return a[0][0];
    
    for(i = 0;i < n; i++) //此处大循环实现将余子式存入数组b中
    {
        for(c = 0;c < n-1; c++)
        {
            for(j = 0;j < n-1;j++)
            {
                if (c < i)
                {//借助c判断每行的移动方法
                    p = 0; //当p=0时,行列式只向左移,即消去对应的第一列的数
                }
                else
                {//否则行列式左移后再上移
                    p = 1;
                }
                b[c][j] = a[c+p][j+1];
            }
        }
        
        if(i % 2 == 0)
        {//i+j(此时j=0,故只考虑i)为偶数,加法预算
            x = 1;
        }
        else
        {//i+j为奇数,减法运算
            x = (-1);
        }
        sum += a[i][0] * Fun(n-1,b ) * x; //计算行列式的值
    }
    return sum; //将值返回
}

二、虚数的直观图解

1、前言

我一直觉得虚数 (Imaginary Number) 很难懂。中学老师说,虚数就是 -1 的平方根。

图2.1.1 虚数

可是,什么数的平方等于 -1 呢?计算器直接显示出错!一直都没有真正的理解和认识虚数。

在电子信息工程中充斥着虚数,谁能解释,虚数到底是什么?它有什么用?举个高频电子线路中的例子,如下图电感、电容搭建的阻抗匹配电路,有关内容也可参考电阻/电抗/阻抗/电导/电纳/导纳描述。

图2.1.2 阻抗匹配(Microsoft Visio绘制)

Ic 电流超前电压一个角度,IL 电压超前电流一个 90°,Ic 和 IL 上面有一个点,表示矢量。

bb' 输入阻抗 Zbb' = 600Ω,中心频率 f0 = 83MHz,cc' 输出阻抗 Zcc' = R4 = 50Ω(天线),Vbb' = V,求取这里的电感和电容值,使得电路的阻抗匹配。(注:在电子行业中,i 通常用来表示电流,故虚数单位用 j 来表示)

解:

Ic = V/(R4+1/jXc3),若存在一个数,它的倒数等于它的相反数(或者它的倒数的相反数为其自身),这个数是什么形式?根据这一要求,可以给出方程 -j = (1/j) 。由此得 Ic = V/(R4-jXc3)。

将上式的上下各乘以 R4+jXc3,得 Ic = V(R4+jXc3)/[(R4)²-j²(Xc3)²]。

因为 j² = -1,整理上式最终得 Ic = V(R4+jXc3)/[(R4)²+(Xc3)²]。后面的推算略,更多的计算举例见:三相交流电及其计算4、复数表示★

A Visual, Intuitive Guide to Imaginary Numbers – BetterExplained有一篇非常棒的文章《虚数的图解》,这是下文的最终出处。读后恍然大悟,使我终生受益,由是感慨教学方式的不同产生迥异的结果。原来虚数这么简单,一点也不奇怪和难懂!

2、什么是虚数

首先,假设有一根数轴,上面有两个反向的点:+1和-1。

这根数轴的正向部分,可以绕原点旋转。显然,逆时针旋转 180°,+1 就会变成 -1。

这相当于两次逆时针旋转 90°

因此,我们可以得到下面的关系式:

  (+1) * (逆时针旋转90°) * (逆时针旋转90°) = -1

如果把+1消去,这个式子就变为:

  (逆时针旋转90°)² = -1

将"逆时针旋转90°"记为 i :

  i² = -1

这个式子很眼熟,它就是虚数的定义公式。所以,我们可以知道:虚数 i 就是逆时针旋转90°,i 不是一个数,而是一个旋转量下图中虚数的模值 = A点到O点的距离,根据勾股定理可得。

3、虚数的定义

既然 i 表示旋转量,我们就可以用 i 表示任何实数的旋转状态。

将实数轴看作横轴,虚数轴看作纵轴,就构成了一个二维平面。旋转到某一个角度的任何正实数,必然唯一对应这个平面中的某个点。

只要确定横坐标和纵坐标,比如 (1,1i),就可以确定某个实数的旋转量 (45°)。

数学家用一种特殊的表示方法,表示这个二维坐标:用 + 号把横坐标和纵坐标连接起来。比如,把 (1,1i) 表示成 1+1i 。这种表示方法就叫做虚数 (complex number),其中 1 称为实数部,1i 称为虚数部。

为什么要把二维坐标表示成这样呢,下一节告诉你原因。

4、虚数的作用:加法

虚数的引入,大大方便了涉及到旋转的计算。

比如,物理学需要计算"力的合成"。假定一个力是 3 + i ,另一个力是 1 + 3i ,请问它们的合成力是多少?

根据"平行四边形法则",你马上得到,合成力就是 (3 + i) + (1 + 3i) = (4 + 4i)。这就是虚数加法的物理意义

5、虚数的作用:乘法

如果涉及到旋转角度的改变,处理起来更方便。

1)例1、船的航向

一条船的航向是 3 + 4i 。如果该船的航向,逆时针增加 45°,请问新航向是多少?

45° 的航向就是 1 + i 。计算新航向,只要把这两个航向 3 + 4i 与 1 + i 相乘就可以了(原因在下一节解释):

  (3 + 4i) * (1 + i) = (-1 + 7i)

所以,该船的新航向是 -1 + 7i 。

如果航向逆时针增加 90°,就更简单了。因为 90° 的航向就是 i ,所以新航向等于:

  (3 + 4i) * i = (-4 + 3i)

这就是虚数乘法的物理意义:改变旋转角度。

-------------------------------

2)例2、计算复功率

选取电压电流同方向为关联参考方向时,复功率的相位应当和阻抗的相位一致,因此计算得到的复功率相角为电压减电流。

计算复功率时,电压电流相乘,电流取共轭表示的电压的幅角作为被减数、电流的幅角作为减数,这样才可以得到电压减电流的相角差。

6、虚数乘法的数学证明

为什么一个复数改变旋转角度,只要做乘法就可以了?下面就是它的数学证明,实际上很简单。

任何复数 a + bi,都可以改写成旋转半径 r 与横轴夹角 θ 的形式。假定现有两个复数 a + bi 和 c + di,可以将它们改写如下:

这两个复数相乘,(a + bi)(c + di) 就相当于 r1 * r2 * (cosθ1 + isinθ1) * (cosθ2 + isinθ2)

展开后面的乘式,得到 cosθ1 * cosθ2 - sinθ1 * sinθ2 + i(cosθ1*sinθ2 + sinθ1*cosθ2)

根据三角函数两角和公式,上面的式子就等于 cos(θ1+θ2) + isin(θ1+θ2)

所以 (a + bi)(c + di) = r1 * r2 * [cos(θ1+θ2) + isin(θ1+θ2)]。

这就证明了,两个复数相乘,就等于旋转半径相乘、旋转角度相加。

三、三角函数

1、求圆的半径

1)破碎的圆片

2)确定PCB的圆弧★

有关 PCB 绘制的详细内容移步专栏:线路板、钢网、PCBA

2、辅助角

在和差化积问题中,有些和差形式的表达式不能直接应用和差化积公式,但引进适当的辅助角后就可容易地将它们化为乘积形式。有关三角函数的知识移步:数学-三角函数

在一般形式的引人辅助角的变换可以说明如下:将已知数或已知式考虑成某个自变量的三角函数值,这个自变量叫做辅助角(辅助自变量)。

从辅助角的所有可能值的集合中取出一个完全确定的值(例如,绝对值最小的值)。这样选好后,辅助角它的三角函数的给定值,可以完全确定,并且在以后的变换式中就看成是已知的。

3、求解单摆高度差

四、Matlab求定积分与不定积分

直观数学:图解数学,关于Matlab 的部分知识移步:数学工具-Matlab Simulink仿真

积分相当于求面积

1、Matlab求不定积分

1)首先举一个比较简单的例子,来验证 matlab 求不定积分的功能。

求函数 “xe^x” 的不定积分。

我们要用到 "int" 命令,具体操作见下图。

-------------------------------

2)函数 “xe^x” 的不定积分的结果见下图

实际上,我们要求 f(x) 的不定积分,只需在 matlab 中输入如下命令:

*****命令开始*****

syms x C

int(  f(x)   ) +C

*****命令结束******

当然上面命令中的 f(x) 为你自己指定

我们还知道一些函数的被积函数是无法用初等函数表示的,比如函数 “sin(x)/x"。

下面我们用 matlab 来求一下函数 “sin(x)/x" 的不定积分。看下图的结果:

2、Matlab求定积分

1)首先举一个比较简单的例子

求函数 "x^2*e^x" 在(0到1)上的积分

输入命令:

*****命令开始*****

syms x

int( x^2*exp(x), 0, 1 )

*****命令结束******

命令见下图:
 

-------------------------------

2)函数 “x^2*e^x” 在(0到1)的定积分的结果见下图

实际上,我们要求 f(x) 的在 (a到b) 的定积分,只需在 matlab 中输入如下命令:

*****命令开始*****

syms x

int(  f(x)  , a, b  )

*****命令结束******

当然上面命令中的 f(x) 为你自己指定

a 为积分下限,b 为积分上限。

也可以采用 Excel 求取定积分,请移步:Excel画折线图做定积分。 

五、公式推导

1、三角形、梯形面积推导

长方形的面积是长方形物体表面的大小或围成长方形平面的大小,计算方法是长乘以宽。将长方形倾斜即可得到平形四边形。

2、球形面积推导

1)圆的面积推导

本内容引自于:X-Ray and Time-Lapse Vision。先让我们看一下周长、面积、表面积和体积的计算公式:

圆盘真的只是一堆戒指放在一起,以下是圆圈区域的“分步”视图:

让我们展开那些卷曲的戒指变成直线,因为它们更容易测量:

我们有一堆拉直的环,形成一个三角形, 这样更容易衡量。因为三角形比圆更容易计算,所以找到面积公式不是太麻烦。即“环形三角形”的面积 = 1/2*底边*高 = 1/2*𝑟*(2𝜋𝑟) = 𝜋𝑟²,即可得到圆的面积公式S圆 = 𝜋𝑟²

2)球形面积推导

3)平方反比定律★

本内容引自:最美的公式:你也能懂的麦克斯韦方程组(积分篇)

假设现在有一个点源开始向四面八方传播,因为它携带的能量是一定的,那么在任意时刻能量达到的地方就会形成一个球面。而球面的面积公式 S = 4πr²(r为半径),它跟半径的平方r²成正比,这也就是说:我们同一份能量在不同的时刻要均匀的分给4πr²个部分,那么每个点得到的能量就自然得跟 4πr² 成反比,这就是平方反比定律的更深层次的来源。在EMC、抗干扰专栏中的辐射发射(RE)具有同样的规律。

因此,如果我们生活在四维空间里,我们就会看到很多立方反比的定律,而这也是科学家们寻找高维度的一个方法。许多理论(比如超弦理论)里都有预言高维度,科学家们就去很小的尺度里测量引力,如果引力在一个很小的尺度里不再遵循平方反比定律,那就很有可能是发现了额外的维度

3、一元二次方程根推导

4、欧拉公式推导★

圆心为原点 (0,0) 的圆圈数学方程式:

此式转换为通俗易懂的语句:所有点与中心的距离相等。

1)欧拉公式的由来

麦克劳林公式来自微积分基础1-微分篇8、泰勒Taylor公式及其应用

2)欧拉公式的变换

3)欧拉公式的图形

时域与频域的对应关系(信号与系统)

5、算数平均值≥几何平均值

tanθ = h/a,tanθ = b/h,那么h = √ab,(a+b)/2 ≥ √ab,三角函数


星光不问赶路人,岁月不负有心人。觉得不错,动动发财的小手点个赞哦!

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

爱上电路设计

你的鼓励是我创作最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值