【Image captioning】S2 Transformer for Image Captioning 实现流程

本文详细介绍了S2 Transformer用于Image Captioning的实现流程,包括环境设置、数据准备、训练、离线和在线评估。作者提供了训练模型的命令,并分享了预训练模型的评估结果。此外,还提及了参考文献和致谢。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

S2 Transformer for Image Captioning 实现流程

作者:安静到无声 个人主页

image-20230909182827719

环境设置

克隆此存储库并使用environment. yml 文件创建m2release conda环境:

conda env create -f environment.yaml
conda activate m2release

然后执行以下命令下载spacy数据:

python -m spacy download en_core_web_md

**注意:**运行我们的代码需要Python

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

CV视界

如果感觉有用,可以打赏哦~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值