树及堆的简单实现

一.树

1.树的概念及结构

1.1树的概念

树是一种非线性的数据结构,它是由n(n>=0)个有限结点组成一个具有层次关系的集合。把它叫做树是因 为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的。

有一个特殊的结点,称为根结点,根节点没有前驱结点 除根节点外,其余结点被分成M(M>0)个互不相交的集合T1、T2、……、Tm,其中每一个集合Ti(1又是一棵结构与树类似的子树。

每棵子树的根结点有且只有一个前驱,可以有0个或多个后继 因此,树是递归定义的。

1.2树的相关概念

  1. 节点的度:一个节点含有的子树的个数称为该节点的度; 如上图:A的为6
  2. 叶节点或终端节点:度为0的节点称为叶节点; 如上图:B、C、H、I...等节点为叶节点
  3. 非终端节点或分支节点:度不为0的节点; 如上图:D、E、F、G...等节点为分支节点
  4. 双亲节点或父节点:若一个节点含有子节点,则这个节点称为其子节点的父节点; 如上图:A是B的父节点
  5. 孩子节点或子节点:一个节点含有的子树的根节点称为该节点的子节点; 如上图:B是A的孩子节点
  6. 兄弟节点:具有相同父节点的节点互称为兄弟节点; 如上图:B、C是兄弟节点
  7. 树的度:一棵树中,最大的节点的度称为树的度; 如上图:树的度为6
  8. 节点的层次:从根开始定义起,根为第1层,根的子节点为第2层,以此类推
  9. 树的高度或深度:树中节点的最大层次; 如上图:树的高度为4
  10. 堂兄弟节点:双亲在同一层的节点互为堂兄弟;如上图:H、I互为兄弟节点
  11. 节点的祖先:从根到该节点所经分支上的所有节点;如上图:A是所有节点的祖先
  12. 子孙:以某节点为根的子树中任一节点都称为该节点的子孙。如上图:所有节点都是A的子孙
  13. 森林:由m(m>0)棵互不相交的树的集合称为森林;

1.3树的表示

像之前学习过的顺序表以及链表都是线性结构,而树则是非线性结构,既要存储数据,也要保持子孙和祖先之间的联系。有很多种表示方法这里介绍一种最常见的:左孩子右兄弟表示法

typedef int DataType;
struct Node
{
 struct Node* LeftChild1; // 第一个孩子结点
 struct Node* RightBrother; // 指向其下一个兄弟结点
 DataType _data; // 结点中的数据域
};

从这两张图我们可以看出我们让左孩子为我们的孩子结点,然后右边的兄弟为我们的右兄弟节点,如C右边没有兄弟了我们便把右兄弟结点置为NULL。这样我们便可以以根结点去便利整个树。

2.二叉树的概念和结构

2.1二叉树的概念

一棵二叉树是结点的一个有限集合,该集合:

1. 或者为空 2. 由一个根节点加上两棵别称为左子树和右子树的二叉树组成

从上图可以看出:1. 二叉树不存在度大于2的结点 2. 二叉树的子树有左右之分,次序不能颠倒,因此二叉树是有序树

注意:对于任意的二叉树都是由以下几种情况复合而成的:

2.2现实中的二叉树

2.3特殊的二叉树

  1.  满二叉树:一个二叉树,如果每一个层的结点数都达到最大值,则这个二叉树就是满二叉树。也就是说,如果一个二叉树的层数为K,且结点总数是 ,则它就是满二叉树。
  2.  完全二叉树:完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而引出来的。对于深度为K的,有n个结点的二叉树,当且仅当其每一个结点都与深度为K的满二叉树中编号从1至n的结点一一对 应时称之为完全二叉树。 要注意的是满二叉树是一种特殊的完全二叉树。

以上是概念哈,其实满二叉树就是顾名思义这颗树是满的,如下。而完全二叉树就是除了叶子结点其他的所有结点都是满的。

2.4二叉树的性质

  1.  若规定根节点的层数为1,则一棵非空二叉树的第i层上最多有 个结点. 
  2. 若规定根节点的层数为1,则深度为h的二叉树的最大结点数是 . 
  3. 对任何一棵二叉树, 如果度为0其叶结点个数为 , 度为2的分支结点个数为 ,则有 = +1
  4.  若规定根节点的层数为1,具有n个结点的满二叉树的深度,h= . (ps: 是log以2 为底,n+1为对数) 
  5. 对于具有n个结点的完全二叉树,如果按照从上至下从左至右的数组顺序对所有节点从0开始编号,则对 于序号为i的结点有:(1) 若i>0,i位置节点的双亲序号:(i-1)/2;i=0,i为根节点编号,无双亲节点 (2) 若2i+1,左孩子序号:2i+1,2i+1>=n否则无左孩子 (3) 若2i+2,右孩子序号:2i+2,2i+2>=n否则无右孩子

(大家看个热闹就行,第五条记住就行)

2.5二叉树的存储结构

二叉树一般可以使用两种结构存储,一种顺序结构,一种链式结构。

1. 顺序存储

顺序结构存储就是使用数组来存储,一般使用数组只适合表示完全二叉树,因为不是完全二叉树会有空 间的浪费。而现实中使用中只有堆才会使用数组来存储,关于堆我们后面的章节会专门讲解。二叉树顺 序存储在物理上是一个数组,在逻辑上是一颗二叉树。

2. 链式存储

二叉树的链式存储结构是指,用链表来表示一棵二叉树,即用链来指示元素的逻辑关系。 通常的方法是 链表中每个结点由三个域组成,数据域和左右指针域,左右指针分别用来给出该结点左孩子和右孩子所 在的链结点的存储地址 。链式结构又分为二叉链和三叉链,当前我们学习中一般都是二叉链,后面课程 学到高阶数据结构如红黑树等会用到三叉链。

二.堆

1.堆的概念及结构

如果有一个关键码的集合K = { , , ,…, },把它的所有元素按完全二叉树的顺序存储方式存储 在一个一维数组中,并满足: 且 = 且 >= ) i = 0,1, 2…,则称为小堆(或大堆)。将根节点最大的堆叫做最大堆或大根堆,根节点最小的堆叫做最小堆或小根堆。

堆的性质:

  1. 堆中某个节点的值总是不大于或不小于其父节点的值;
  2. 堆总是一棵完全二叉树。
  3. 小堆(任何一个父亲<=孩子)
  4. 大堆(任何一个父亲>=孩子)

2.堆的实现

我们逻辑上是可以把堆看成数组,所以我们就可以以数组的模式去对堆进行调整。所以我们要实现下面这写功能

typedef int HPDataType;
typedef struct Heap
{
 HPDataType* a;
 int size;
 int capacity; 
}Hp;
 
// 堆的构建
void HeapInit(Hp* php);
// 堆的销毁
void HeapDestory(Hp* php);
// 堆的插入
void HeapPush(Hp* php, HPDataType x);
// 堆的删除
void HeapPop(Hp* php);
// 取堆顶的数据
HPDataType HeapTop(Hp* php);
// 堆的数据个数
int HeapSize(Hp* php);
// 堆的判空
int HeapEmpty(Hp* php);

2.1堆的创建和销毁

其实堆的创建和销毁和顺序表的结构是十分相像的。

void HeapInit(Hp*php)
{
	assert(php);//进行断言
	php->a = NULL;
	php-> size = 0;
	php-> capacity = 0;
}
void Heapdestory(Hp*php)
{
	assert(php);//进行断言
	free(php->a);
	php->a = NULL;//防止野指针
	php->capacity = 0;
	php->size = 0;
}

2.2堆的向上调整算法

我们先思考,我们需要插入一个数据进入的这个数组,这个步骤是十分简单的,但是我们这个数组是个堆,他要么是个大堆要么是个小堆,所以我们插入的这个数据就一定是呆在最后面么?为了保证堆的结构我们要对这个数据进行处理。

左边的堆物理上就是右边的数组。

实际上我们就是要把10插入到这个数组中,但是我们还要保证这个数组的堆结构。我们看这个10按照小堆的定义它应该先与28换位置再与15换位置是吧,我们根据上面的二叉树的性质可以得知parent=(child-1)/2(parent和child都是下标)我们可以根据下标来找到数据从而进行换位。

void Heappush(Hp* php, Hpdatetype x)
{
	assert(php);
	if (php->size == php->capacity)//判断是否需要扩容
	{
		size_t newcapacity = php->capacity == 0 ? 4 : php->capacity * 2;
		Hpdate* tem = realloc(php->a, sizeof(Hpdate) * newcapacity);
		if (tem == NULL)
		{
			perror("reallon fail");
			return;
		}
		php->a = tem;
		php->capacity = newcapacity;
	}
	php->a[php->size] = x;
	php->size++;
	AdjustUp(php->a, php->size - 1);
}
void swap(Hpdatetype* x, Hpdatetype* y)
{
	Hpdate ret = *x;
	*x = *y;
	*y = ret;
}
//向上调整算法
void AdjustUp(Hpdatetype* a,int child)
{
	int parent = (child - 1) / 2;
	while (child > 0)
	{
		if (a[child] < a[parent])//换一下>就会变成大堆
		{
			swap(&a[child], &a[parent]);
			child = parent;
			parent = (child - 1) / 2;
		}
		else
		{
			break;
		}
	}
}

2.3向下调整算法

有了插入我们也就会有删除,删除我们就会想着挪动删除,在顺序表中很简单吧,直接动一下size

但是我们想一下我们如果去挪动数据之后,这个数组还是一个堆么?很显然不是,直接就倒反天罡了父子变兄弟了,而且时间复杂度变成的O(N)。所以我们想出一种办法,让第一个数据与最后的数据交换位置然后再删除掉数据,在进行向下调整算法。显然向下和向上的原理是一样的,但是向下调整要稍微复杂一点

void AdjustDown(Hpdatetype* a, int n, int parent)
{//先进行假设,假设左孩子小,然后在进行判断
	int child = parent * 2 + 1;
	while (child<n)//统一写成小于,便于修改成大堆
	{
		if (a[child + 1] < a[child])
		{
			++child;
		}
		if (a[child] < a[parent])
		{
			swap(&a[child], &a[parent]);
			parent = child;
			child = parent * 2 + 1;
		}
		else
		{
			break;
		}
	}
}
void HeapPop(Hp* php)
{
	assert(php);
	assert(php->size > 0);
	swap(&php->a[0], &php->a[php->size - 1]);
	php->size--;
	AdjustDown(php->a, php->size, 0);
}

2.4堆的其他实现

Hpdatetype HeapTop(Hp* php)
{
	assert(php);
	return php->a[0];
}
bool HpEmpty(Hp* php)
{
	awwert(php);
	return php->size == 0;
}

这俩一目了然好吧,一眼都知道在干啥

我们看一下实现后的结果

int main()
{
	int a[] = { 60,70,65,50,32,100 };

	HP hp;
	HeaPInit(&hp);
	for (int i = 0; i < sizeof(a)/sizeof(int); i++)
	{
		HeaPPush(&hp, a[i]);
	}
	while (!HPEmpty(&hp))
	{
		printf("%d\n", HeaPTop(&hp));
		HeaPPop(&hp);
	}

	HeaPDestroy(&hp);

	return 0;
}

如果改动一下三个>号就会变成第二个图

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值