经过一段时间的学习,终于要迎来这个激动人心的时刻了,我们要开始写我们自己的神经网络了!
不过在此之前还是先回顾一下之前所学到的知识。
回顾与复习
Python是一门比较简单的语言,本次实战就是用Python来写的,因此先要在电脑上安装好Python。
我们从最简单的感知机开始,渐渐地推广到多层的感知机。在引入了激活函数后,实现了从感知机到神经网络质的飞跃。然后我们开始了解神经网络的结构,深入地了解输出层是如何设计的,在此基础上又理解了信息是如何在神经网络中正向传递的。最后,我们了解了一些微积分的知识,学会了随机梯度下降法,明白了神经网络是如何学习数据的。
至此,神经网络的基本内容也就学习完毕了!
实战内容
MNIST数据集,这一个也被称为神经网络的“Hello World!”
该数据集的具体使用方法请看这里。
神经网络的设计
在开始敲代码之前,不妨还是冷静一下下。
来看看这个神经网络该如何设计,每一层该又多少个结点。
Python的实现
为了方便调用,也为了代码更加的简洁,不妨将神经网络写成一个类类型,并将其独立成一个模块,方便导入其他代码。
import numpy as np
from numpy.core.fromnumeric import ndim
#用于矩阵计算
import scipy.special
#用于计算激活函数S函数
import matplotlib.pyplot as plt
#用于画图
class neuralNetwork:
def __init__(self , input_node , output_node , hidden_node , learning_rate):
self.input_nodes = input_node
self.output_nodes = output_node
self.hidden_nodes = hidden_node
self.rate = learning_rate
self.weight_input_hidden = np.random.normal(0.0