JZOJ1764. 游戏

题目

Description

  xc抽空光顾了lp的饲养场,在一大堆赞美语之后和lp玩起了一个游戏——
  一个完整的倒三角有n层,第一层有n个数字,为原始数字,接下来每层都比上一层减少1个数字,并有f[i,j]=f[i-1,j]+f[i-1,j+1] ,如
  3  1  2  4
    4  3  6
     7  9
      16
  由xc给出f[n,1],和一个限制max(0<=f[1,i]<=max),lp要迅速回答出字典序最小的f[1]序列,即f[1,1]最小的情况下f[1,2]要最小……以此类推。
  xc觉得这个问题对于lp还是太简单了,于是又添加了一些坏点,以坐标的形式给出,所谓坏点就是f[i,j]恒为0,现在就让大家一起来玩这个游戏吧。

Input

  第一行四个数 n,m,max,f[n,1]
  接下来m行,每行一个坐标,表示是一个坏点

Output

  无解则输出-1
  否则输出n行,第i行输出f[1,i],要求f[1]字典序最小

Sample Input

3 1 3 4

2 2

Sample Output

1

3

0

Hint

【数据说明】
  40%的数据:n<=10;m=1;max<=10;f[n,1]<=1,000
  90%的数据:max<=100
  100%的数据:n<=100;m<=20;max<=10,000;0<=f[n,1]<=10,00

分析

观察这个三角形的组成方式,有点像杨辉三角。

那我们先不考虑存在坏点的情况,

fi,j 表示i,j这个位置的数值

从第n行向前推:

fn,1=fn,1

向上一行:

fn,1=fn1,1+fn1,2

继续推:

fn,1=fn1,1+fn1,2=fn2,1+2fn2,2+fn2,3

fn,1=fn1,1+fn1,2=fn2,1+2fn2,2+fn2,3=fn3,1+3fn3,2+3fn3,3+fn3,4

观察每一项的系数,我们就可以发现规律,系数就是杨辉三角。

我们就用 gi,j 表示它对应的 fi,j 的系数。

现在,再重新去考虑坏点的情况:

因为坏点要求这个点始终是0,

所以,如果这个点是坏点,那么就直接把 gi,j 赋值等于0就可以了。

到了最后我们可以得到一个多元一次方程:

fn,1=ni=1g1,if1,i

  • 接下来的事情就是解方程了。

我们只需要求一组整数解,而且是字典序最小的,所以不需要什么高级方法。

就是递归求解,加上一下玄学的剪枝优化就可以了。

Code(c++)

#include <cstdio>
#include <algorithm>
#include <cstring>
#include <string.h>
#include <cmath>
#include <stdlib.h>
#include <math.h>
using namespace std;

struct arr{
    int x,y;
}a[30];

int n,m,mx,p,x,ans;
int f[2][103];
bool pd;
int g[130];

bool cmp(arr x,arr y)
{
    return (x.x>y.x)||((x.x==y.x)&&(x.y<y.y));
}

void dg(int x,int sum)
{
    if(pd)return;
    if(x>n)
    {
        if(sum==ans)pd=1;
        return;
    }
    if(f[p][x]==0)dg(x+1,sum);
    else
    {
        for(int i=0;i<=min((ans-sum)/f[p][x],mx);i++)
        {
            g[x]=i;
            dg(x+1,sum+f[p][x]*i);
            if(pd)return;
        }
    }
}

int main()
{
    p=0;
    scanf("%d%d%d%d",&n,&m,&mx,&ans);
    for(int i=1;i<=m;i++)
        scanf("%d%d",&a[i].x,&a[i].y);
    f[0][1]=1;

    sort(a+1,a+1+m,cmp);

    x=1;
    for(int i=2;i<=n;i++)
    {
        p=1-p;
        memset(f[p],0,sizeof(f[p]));
        for(int j=1;j<=i;j++)
        {
            f[p][j]+=f[1-p][j];
            f[p][j+1]+=f[1-p][j];
        }
        for(int j=1;j<=i;j++)
        {
            if((n-i+1==a[x].x)&&(j==a[x].y))
            {
                x++;
                f[p][j]=0;
            }
        }
    }

    pd=0;
    dg(1,0);
    if(!pd)
    {
        printf("-1\n");
        return 0;
    }
    for(int i=1;i<=n;i++)
        printf("%d\n",g[i]);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值