Description
一棵树上有n个节点,编号分别为1到n,每个节点都有一个权值w。
我们将以下面的形式来要求你对这棵树完成一些操作:
I. CHANGE u t : 把结点u的权值改为t
II. QMAX u v: 询问从点u到点v的路径上的节点的最大权值
III. QSUM u v: 询问从点u到点v的路径上的节点的权值和
注意:从点u到点v的路径上的节点包括u和v本身
Input
输入文件的第一行为一个整数n,表示节点的个数。
接下来n – 1行,每行2个整数a和b,表示节点a和节点b之间有一条边相连。
接下来n行,每行一个整数,第i行的整数wi表示节点i的权值。
接下来1行,为一个整数q,表示操作的总数。
接下来q行,每行一个操作,以“CHANGE u t”或者“QMAX u v”或者“QSUM u v”的形式给出。
Output
对于每个“QMAX”或者“QSUM”的操作,每行输出一个整数表示要求输出的结果。
Sample Input
4
1 2
2 3
4 1
4 2 1 3
12
QMAX 3 4
QMAX 3 3
QMAX 3 2
QMAX 2 3
QSUM 3 4
QSUM 2 1
CHANGE 1 5
QMAX 3 4
CHANGE 3 6
QMAX 3 4
QMAX 2 4
QSUM 3 4
Sample Output
4
1
2
2
10
6
5
6
5
16
Data Constraint
对于100%的数据,保证1<=n<=30000,0<=q<=200000;中途操作中保证每个节点的权值w在-30000到30000之间。
题解
这是一道树链剖分十分经典的题目,
链剖之后,用线段树维护最大值还有和,
单点修改,询问就在找lca的时候顺便记录一下就行了。
关于树链剖分,请看树链剖分详解。
code
#include<queue>
#include<cstdio>
#include<iostream>
#include<algorithm>
#include <cstring>
#include <string.h>
#include <cmath>
#include <math.h>
#include <time.h>
#define N 30003
#define M 103
#define db double
#define P putchar
#define G getchar
#define inf 998244353
using namespace std;
char ch;
void read(int &n)
{
n=0;
ch=G();
while((ch<'0' || ch>'9') && ch!='-')ch=G();
int w=1;
if(ch=='-')w=-1,ch=G();
while('0'<=ch && ch<='9')n=(n<<3)+(n<<1)+ch-'0',ch=G();
n*=w;
}
int max(int a,int b){return a>b?a:b;}
int min(int a,int b){return a<b?a:b;}
int abs(int x){return x<0?-x:x;}
int sqr(int x){return x*x;}
void write(int x){if(x>9) write(x/10);P(x%10+'0');}
int mx[N*4],s[N*4],l[N*4],r[N*4],v[N];
int nxt[N*2],to[N*2],lst[N],tot;
int si[N],top[N],son[N],dep[N],fa[N],id[N],rank[N],now;
int n,x,y,xx,yy,Q,opl,opr,ops,opx;
void ins(int x,int y)
{
nxt[++tot]=lst[x];
to[tot]=y;
lst[x]=tot;
}
void dfs(int x)
{
int t=0;si[x]=1;
for(int i=lst[x];i;i=nxt[i])
if(to[i]!=fa[x])
{
dep[to[i]]=dep[x]+1;
fa[to[i]]=x;
dfs(to[i]);
si[x]+=si[to[i]];
if(si[to[i]]>t)t=si[to[i]],son[x]=to[i];
}
}
void dfs_(int x,int t)
{
id[x]=++now;
rank[now]=x;
top[x]=t;
if(son[x])dfs_(son[x],t);
for(int i=lst[x];i;i=nxt[i])
if(to[i]!=fa[x] && to[i]!=son[x])
dfs_(to[i],to[i]);
}
void updata(int x)
{
mx[x]=max(mx[x<<1],mx[(x<<1)+1]);
s[x]=s[x<<1]+s[(x<<1)+1];
}
void build(int x,int ll,int rr)
{
l[x]=ll;r[x]=rr;
if(ll==rr)
{
mx[x]=s[x]=v[rank[ll]];
return;
}
int m=(ll+rr)>>1;
build(x<<1,ll,m);
build((x<<1)+1,m+1,rr);
updata(x);
}
void work(int x)
{
if(opl<=l[x] && r[x]<=opr)
{
if(opx==1)mx[x]=s[x]=ops;else
if(opx==2)ops+=s[x];else ops=max(ops,mx[x]);
return;
}
int m=(l[x]+r[x])>>1;
if(opl<=m)work(x<<1);
if(m<opr)work((x<<1)+1);
updata(x);
}
int main()
{
freopen("data1.in","r",stdin);
freopen("data.out","w",stdout);
read(n);
for(int i=1;i<n;i++)
read(x),read(y),ins(x,y),ins(y,x);
for(int i=1;i<=n;i++)
read(v[i]);
dep[1]=1;
dfs(1);
dfs_(1,1);
build(1,1,n);
for(read(Q);Q;Q--)
{
for(ch=G();ch!='C' && ch!='X' && ch!='U';ch=G());
if(ch=='C')
{
read(opl);read(ops);
opr=id[opl];opl=opr;
opx=1;
work(1);
}
else
{
if(ch=='X')ops=-2147483647,opx=3;
else ops=0,opx=2;
read(x);read(y);
for(xx=top[x],yy=top[y];xx!=yy;xx=top[x],yy=top[y])
if(dep[xx]>=dep[yy])
{
opl=id[xx];opr=id[x];
work(1);
x=fa[xx];
}
else
{
opl=id[yy];opr=id[y];
work(1);
y=fa[yy];
}
opl=id[x];
opr=id[y];
if(opl>opr)swap(opl,opr);
work(1);
if(ops<0)P('-'),write(-ops);else write(ops);
P('\n');
}
}
return 0;
}