Description
一天,Y 君在测量体重的时候惊讶的发现,由于常年坐在电脑前认真学习,她的体重有了突 飞猛进的增长。
幸好 Y 君现在退役了,她有大量的时间来做运动,她决定每天从教学楼跑到食堂来减肥。
Y 君将学校中的所有地点编号为 1 到 n,其中她的教学楼被编号为 S,她的食堂被编号为 T, 学校中有 m 条连接两个点的双向道路,保证从任意一个点可以通过道路到达学校中的所有点。
然而 Y 君不得不面临一个严峻的问题,就是天气十分炎热,如果 Y 君太热了,她就会中暑。 于是 Y 君调查了学校中每条路的温度 t,及通过一条路所需的时间 c。Y 君在温度为 t 的地 方跑单位时间,就会使她的热量增加 t。
由于热量过高 Y 君就会中暑,而且 Y 君也希望在温度较低的路上跑,她希望在经过的所有 道路中最高温度最低的前提下,使她到达食堂时的热量最低 (从教学楼出发时,Y 君的热量为 0)。
请你帮助 Y 君设计从教学楼到食堂的路线,以满足她的要求。你只需输出你设计的路线中所 有道路的最高温度和 Y 君到达食堂时的热量。
Input
第一行由一个空格隔开的两个正整数 n, m,代表学校中的地点数和道路数。
接下来 m 行,每行由一个空格隔开的四个整数 a, b, t, c 分别代表双向道路的两个端点,温度 和通过所需时间.
最后一行由一个空格隔开的两个正整数 S, T,代表教学楼和食堂的编号。
注意:输入数据量巨大,请使用快速的读入方式。
Output
一行由一个空格隔开的两个整数,分别代表最高温度和热量。
Sample Input
5 6
1 2 1 2
2 3 2 2
3 4 3 4
4 5 3 5
1 3 4 1
3 5 3 6
1 5
Sample Output
3 24
Data Constraint
10% 的数据满足 t = 0
另外 10% 的数据满足 c = 0
另外 30% 的数据满足 n ≤ 2000
100% 的数据满足 n ≤ 5 × 10^5 , m ≤ 10^6 , 0 ≤ t ≤ 10000, 0 ≤ c ≤ 10^8 , 1 ≤ a, b, S, T ≤ n, S ≠ T
题解
看到要最小化最大值,很容易想到二分这个最大值,
这个是一种可行的做法,但会TLE。
考虑按照温度加入边,当S与T首次连通的时候,温度一定是最小的,
然后再在这张图里面跑一次最短路。
code
#pragma GCC optimize(2)
#include <cstdio>
#include <iostream>
#include <algorithm>
#include <cstring>
#include <string.h>
#include <cmath>
#include <math.h>
#include <time.h>
#define ll long long
#define N 500003
#define M 2000003
#define db double
#define P putchar
#define G getchar
#define inf 998244353
#define pi 3.1415926535897932384626433832795
using namespace std;
char ch;
void read(int &n)
{
n=0;
ch=G();
while((ch<'0' || ch>'9') && ch!='-')ch=G();
ll w=1;
if(ch=='-')w=-1,ch=G();
while('0'<=ch && ch<='9')n=(n<<3)+(n<<1)+ch-'0',ch=G();
n*=w;
}
int max(int a,int b){return a>b?a:b;}
int min(int a,int b){return a<b?a:b;}
ll abs(ll x){return x<0?-x:x;}
ll sqr(ll x){return x*x;}
void write(ll x){if(x>9) write(x/10);P(x%10+'0');}
int n,m,S,T,x,y,w,z,lim,fa[N];
ll t,f[N];
int q[N*103],head,tail;
int nxt[M],lst[N],v[M],c[M],to[M],tot;
bool bz[N];
struct node
{
int x,y,w,z;
}a[M];
bool cmp(node a,node b)
{
return a.w<b.w;
}
int get(int x){return fa[x]=(fa[x]==x?x:get(fa[x]));}
void ins(int x,int y,int w,int z)
{
nxt[++tot]=lst[x];
to[tot]=y;
v[tot]=w;
c[tot]=z;
lst[x]=tot;
}
void spfa()
{
memset(f,127,sizeof(f));
memset(bz,1,sizeof(bz));
for(head=100,bz[S]=f[q[tail=101]=S]=0;head<tail;)
{
x=q[++head];
for(int i=lst[x];i;i=nxt[i])
{
if(v[i]>lim)continue;
t=(ll)v[i]*c[i];
if(f[to[i]]>f[x]+t)
{
f[to[i]]=f[x]+t;
if(bz[to[i]])
{
bz[to[i]]=0;
if(f[to[i]]<f[q[head+1]])q[head--]=to[i];
else q[++tail]=to[i];
}
}
}
bz[x]=1;
}
}
int main()
{
freopen("running.in","r",stdin);
freopen("running.out","w",stdout);
read(n);read(m);
for(int i=1;i<=m;i++)
read(a[i].x),read(a[i].y),read(a[i].w),read(a[i].z);
sort(a+1,a+1+m,cmp);
read(S);read(T);a[m+1].w=-1;
for(int i=1;i<=n;i++)fa[i]=i;
for(int i=1;get(S)!=get(T);)
{
for(x=i;a[x].w==a[i].w;x++)
{
ins(a[x].x,a[x].y,a[x].w,a[x].z),ins(a[x].y,a[x].x,a[x].w,a[x].z),
y=get(a[x].x);z=get(a[x].y);
fa[y]=fa[z];
}
i=x;
}
lim=a[x-1].w;
spfa();
printf("%d %lld",lim,f[T]);
return 0;
}