题解
用
s
n
s_n
sn表示前n项的前缀和,
那么现在就是要求满足
s
i
=
2
a
i
s_i=2a_i
si=2ai的最小的i。
考虑一次修改操作对原来的答案ans有什么影响,
如果修改的位置,在ans之后,那就没有什么影响,
如果修改的答案在ans之前,那么修改之后的答案一定是在修改的这个位置之后。
考虑一个问题,假设现在在x点,而且在x之前是没有出现满足要求的i,考虑下一个可能满足要求的位置在哪里。
有这样一条式子:
s
x
≤
s
i
≤
2
∗
a
i
s_x≤s_i≤2*a_i
sx≤si≤2∗ai,也就是要找再x后面,第一个大于
s
x
/
2
s_x/2
sx/2的位置。
这个可以用线段树来维护,用线段树位置区间最大值。查询的时候,如果左儿子的区间最大值满足条件,就访问左儿子,否则就访问右儿子。
code
#include <cstdio>
#include <iostream>
#include <algorithm>
#include <cstring>
#include <string.h>
#include <cmath>
#include <math.h>
#include <time.h>
#define ll long long
#define N 200003
#define M ((l+r)>>1)
#define P putchar
#define G getchar
#define ls (x<<1)
#define rs (x<<1|1)
using namespace std;
char ch;
void read(int &n)
{
n=0;
ch=G();
while((ch<'0' || ch>'9') && ch!='-')ch=G();
int w=1;
if(ch=='-')w=-1,ch=G();
while('0'<=ch && ch<='9')n=(n<<3)+(n<<1)+ch-'0',ch=G();
n*=w;
}
int max(int a,int b){return a>b?a:b;}
int min(int a,int b){return a<b?a:b;}
void write(ll x){if(x>9) write(x/10);P(x%10+'0');}
int mx[N*4],lazy[N*4];
int n,m,a[N],opl,opr,ops,opx,x,y,nxt,ans;
ll s[N];
int x_(int x){return x&(-x);}
ll get(int x)
{
ll S=0;
for(int i=x;i;i=i-x_(i))
S=S+s[i];
return S;
}
void ins(int x,int y)
{
for(int i=x;i<=n;i=i+x_(i))
s[i]=s[i]+y;
}
void build(int x,int l,int r)
{
if(l==r)
{
mx[x]=a[l];
return;
}
int m=M;
build(ls,l,m);
build(rs,m+1,r);
mx[x]=max(mx[ls],mx[rs]);
}
void down(int x)
{
if(lazy[x])
{
lazy[ls]=lazy[ls]+lazy[x];
lazy[rs]=lazy[rs]+lazy[x];
mx[ls]=mx[ls]+lazy[x];
mx[rs]=mx[rs]+lazy[x];
lazy[x]=0;
}
}
void find(int x,int l,int r)
{
down(x);
if(nxt || mx[x]<ops)return;
if(l==r)
{
if(mx[x]>=ops)nxt=l;
return;
}
if(mx[ls]>=ops)find(ls,l,M);
else find(rs,M+1,r);
}
void work(int x,int l,int r)
{
down(x);
if(opl<=l && r<=opr)
{
if(opx==1)mx[x]=mx[x]+ops,lazy[x]=ops;else
if(opx==2)mx[x]=ops;else if(mx[x]>=ops)find(x,l,r);
return;
}
int m=M;
if(opl<=m)work(ls,l,m);
if(m<opr)work(rs,m+1,r);
mx[x]=max(mx[ls],mx[rs]);
}
void solve(int st)
{
for(;get(st)!=(a[st]<<1);st=nxt)
{
nxt=0;
opl=st+1;opr=n;opx=3;ops=get(st);
work(1,1,n);
}
if(st==0)ans=-1;else ans=st;
}
int main()
{
freopen("challenge9.in","r",stdin);
freopen("challenge.out","w",stdout);
read(n);read(m);
for(int i=1;i<=n;i++)read(a[i]),ins(i,a[i]);
build(1,1,n);solve(1);
for(int i=1;i<=m;i++)
{
read(x);read(y);
opl=x+1;opr=n;ops=y-a[x];opx=1;
work(1,1,n);ins(x,ops);
opl=opr=x;opx=2;a[x]=ops=y;
work(1,1,n);
if(ans>=x || ans==-1)solve(x);
if(ans<0)P('-'),P('1');else write(ans);
P('\n');
}
return 0;
}