Description
小 F 是一位 Hack 国的居民,他生活在一条长度为 n 的街道上,这个街道上总共有 n 个商店。每个商店里售卖着不同的 Hack 技能包,每个商店本身也会有个便利值。初始时,每个商店的便利值均为 0。每一天,街道上都会有一些商店优化改造。
具体来说,对于每一天,优化改造的商店都是一个连续的区间 l ∼ r,每次优化改造也会有一个优化参数 k。对于所有 l ≤ i ≤ r ,第 i 个商店的便利值会增加
C
i
+
k
−
l
k
C^k_{i+k-l}
Ci+k−lk。
小 F 想知道,m 天之后,每个商店的便利值分别是多少。由于小 F 并不喜欢高精度,因此你只需要输出便利值对 10^9 + 7 取模的结果。
题解
可以知道,每一个加操作,都是从1开始的,
考虑用差分数组,但是这里这里并不是简单的差分,而是k阶差分。
具体做法跟求C类似一阶一阶往上算。
code
#include <cstdio>
#include <iostream>
#include <algorithm>
#include <cstring>
#include <string.h>
#include <cmath>
#include <math.h>
#define N 500003
#define P putchar
#define G getchar
using namespace std;
char ch;
void read(int &n)
{
n=0;
ch=G();
while((ch<'0' || ch>'9') && ch!='-')ch=G();
int w=1;
if(ch=='-')w=-1,ch=G();
while('0'<=ch && ch<='9')n=(n<<3)+(n<<1)+ch-'0',ch=G();
n*=w;
}
void write(int x){if(x>9) write(x/10);P(x%10+'0');}
const int mo=1000000007;
int s[23][N],n,m,l,r,k,c[23][N];
int add(int x,int y){return (x+y<mo?x+y:x+y-mo);}
int main()
{
freopen("sequence.in","r",stdin);
freopen("sequence.out","w",stdout);
read(n);read(m);
for(int i=0;i<=n+2;i++)c[0][i]=1;
for(int i=1;i<21;i++)
for(int j=i;j<=n+2;j++)
c[i][j]=add(c[i-1][j-1],c[i][j-1]);
for(int i=1;i<=m;i++)
{
read(l);read(r);read(k);
s[k][l]++;s[k][r+1]--;
for(int j=k-1;j>=0;j--)s[j][r+1]=add(s[j][r+1],mo-c[k-j][r-l+k-j]);
}
for(int i=20;i+1;i--)
for(int j=1;j<=n;j++)
s[i][j]=add(s[i][j],add(s[i][j-1],s[i+1][j]));
for(int i=1;i<=n;i++)
write(s[0][i]),P('\n');
return 0;
}