tableau填充地图、多维地图、混合地图

本次课程总结涉及使用全球超市订单数据进行深入分析。作业要求通过内部合并人员和订单表格,创建各国家利润的填充地图,展示红蓝发散的颜色以表示正负利润,并设置地图样式。此外,还需制作各市场不同订购年份利润的多维地图,全面展现数据分布。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

课程总结

作业

6次课作业:
使用“全球超市订单数据”文件,完成以下作业;
1、使用内部合并将人员和订单表格合并,创建”各国家利润”的填充地图,颜色选择红蓝发散,以红色表示正值利润,将地图样式设置为普通,冲蚀程度为20%,显示海岸线,排除未知地理信息,导出图像。

2、按照国家制作“各市场不同订购年份利润”的多维地图,提示:有4个年份和5个市场,颜色为红蓝发散,导出图像。



1、填充地图

在这里插入图片描述

制作步骤:
①将维度【国家/地图】拖到工作表中间位置
②将度量【利润】拖到标记卡颜色,设置红蓝发散,倒序,选择高级选项,中心设为0
③选择地图——地图层,【样式】选择普通,【冲蚀】选择20%,勾选海岸线。
④点击"未知位置",选择筛选。
⑤选择将【国家/地图】拖到标记卡标签

2、多维地图

大概这样,导出时电脑崩了
在这里插入图片描述

制作步骤:
①复制上述填充地图
②将维度【市场】拖到列功能区
③将维度【订购日期】拖到行功能区

参考答案
在这里插入图片描述

<think>嗯,用户想设计一个城市数据大屏,包含多种表,用于城市规划和管理决策支持。首先,我需要明确用户提到的每个表类型的具体需求和技术实现方案。全国人口分布地图可能需要地理数据,用颜色深浅表示不同地区的人口密度。然后是城市经济发展趋势混合,可能结合折线和柱状,显示GDP和增长率。交通违法处理漏斗要展示各阶段的处理情况,突出转化率。城市综合发展雷达需要多维指标,比如经济、环境、教育等。最后是人均GDP与教育投入的散点,显示两者的相关性。 接下来要考虑的是技术工具的选择。用户可能需要开源工具或者商业软件?例如,ECharts和Apache Superset是开源的,适合定制化需求,而Tableau和Power BI更适合快速开发且用户友好。地图可视化可能需要GIS数据的支持,比如GeoJSON格式。数据处理方面,可能需要Python的Pandas库进行数据清洗和预处理,或者用SQL数据库管理数据。 另外,数据大屏的集成和展示需要考虑到实时更新和交互性。使用DataV或FineReport这样的工具可以方便地搭建可视化大屏,并且支持动态数据源。响应式设计也很重要,确保在不同设备上都能良好显示。 还要注意数据安全和权限管理,尤其是涉及城市敏感数据时,需要确保可视化平台有足够的权限控制机制。最后,性能优化也是关键,大量数据渲染时可能需要分页加载或数据聚合,避免页面卡顿。 总结一下,用户需要的是一个全面的技术方案,涵盖数据处理、表生成、大屏集成以及后续的维护和优化。每个表类型对应不同的工具和实现步骤,同时要考虑整体系统的稳定性和用户体验。</think>### 城市数据大屏可视化技术方案 #### 一、全国人口分布地图 1. **技术实现**:使用地理编码数据(GeoJSON)结合分级设色法,通过颜色深浅表示人口密度差异 2. **工具推荐**: - ECharts GL:支持三维地理可视化 - Mapbox:提供高精度地图服务 - Python GeoPandas库:处理地理空间数据 3. **数据要求**: - 行政区划边界数据(省/市/县级别) - 人口统计数据需包含经纬度坐标或标准行政编码 示例代码(ECharts): ```javascript option = { tooltip: { trigger: 'item' }, visualMap: { type: 'piecewise', calculable: true }, series: [{ type: 'map', mapType: 'china', data: [ { name: '北京', value: 2154 }, { name: '上海', value: 2424 } ] }] }; ``` #### 二、城市经济发展趋势混合 1. **组合设计**: - 柱状:展示年度GDP总量 - 折线:叠加显示经济增长率 2. **技术方案**: - Apache Superset:支持混合表配置 - Tableau:通过双轴坐标实现组合效果 3. **交互特性**: - 时间轴控件(年度/季度切换) - 指标切换器(GDP/财政收入/固定资产投资) #### 三、交通违法处理漏斗 1. **数据处理**: - 按处理阶段划分:违法发现→立案→处理→结案 - 计算各阶段转化率:$转化率 = \frac{后阶段数量}{前阶段数量} \times 100\%$ 2. **可视化要点**: - 使用渐变色表示阶段递进 - 标注关键流失节点 3. **推荐工具**: - AntV F2(移动端适配) - Power BI 漏斗模块 #### 四、城市综合发展雷达 $$ R = \sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2} $$ 其中$R$表示综合发展指数,$x_i$代表各维度标准化值 1. **指标体系**: - 经济指标(GDP/财政收入) - 社会指标(教育投入/医疗资源) - 环境指标(PM2.5/绿化率) 2. **实现方式**: - D3.js:定制化多边形雷达 - Excel 三维雷达(快速原型) #### 五、人均GDP与教育投入散点 1. **统计分析**: - 计算皮尔逊相关系数:$r = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum (x_i - \overline{x})^2 \sum (y_i - \overline{y})^2}}$ - 添加趋势线方程:$y = ax + b$ 2. **可视化增强**: - 气泡大小表示人口规模 - 颜色区分区域板块 3. **工具选择**: - Python Matplotlib + Seaborn - R ggplot2 ### 系统集成方案 1. **架构设计**: ```mermaid graph TD A[数据源] --> B{数据处理层} B --> C[数据仓库] C --> D[可视化引擎] D --> E[大屏展示] ``` 2. **推荐平台**: - 阿里云DataV:支持多数据源接入和实时更新 - 帆软FineReport:提供企业级报表集成方案 - Kibana:适合ELK技术栈用户 3. **性能优化**: - 数据缓存:Redis缓存热点数据 - 增量更新:时间戳字段过滤 - 渲染优化:Canvas替代SVG(大数据场景) [^1]: 面积通过填充颜色增强趋势表达的特性,在展示经济发展趋势时可结合时间序列分析使用
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值