win10 | tensorflow-gpu 2.6.0环境搭建 | 显卡 RTX 3070 | 踩坑

本文详细指导了如何在Windows环境下安装TensorFlow-GPU 2.6.0,包括CUDA 11.1的配置、cuDNN的下载与整合,以及环境变量设置。通过代码测试验证GPU可用性,适合初学者和开发者快速上手。

1. 环境准备:

cudnn和CUDA的对应
https://developer.nvidia.com/rdp/cudnn-archive
在这里插入图片描述

需要下载两个文件
在这里插入图片描述

  1. cuda v11.1
    链接 :
    https://developer.download.nvidia.com/compute/cuda/11.1.0/local_installers/cuda_11.1.0_456.43_win10.exe

  2. cudnn v8.0.4.30
    链接:https://developer.nvidia.com/compute/machine-learning/cudnn/secure/8.1.1.33/11.2_20210301/cudnn-11.2-windows-x64-v8.1.1.33.zip

2. 安装tensorflow-gpu 2.6.0

pycharm中或者cmd中执行 pip install tensorflow-gpu == 2.6.0
安装结果如下:
在这里插入图片描述

3. 安装cuda

路径什么的都不要动,选择默认就好
安装过程中选择精简模式,其他自行下一步即可。

4. 解压cudnn

cuDNN文件解压后有bin、include、lib三个文件夹
在CUDA的安装目录:C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.1 里面也有这些文件夹

所以将这cuDNN解压后的文件分别复制到CUDA对应的文件夹里即可!!

5.配置环境变量

在这里插入图片描述

6.代码测试

import tensorflow as tf
from tensorflow.python.client import device_lib
print(device_lib.list_local_devices())
print(tf.test.is_gpu_available())
print(tf.config.list_physical_devices('GPU'))
print(tf.config.list_physical_devices('CPU'))

在这里插入图片描述
请忽视警告(WARNING),这里只是提示不要使用老版本的验证方式
显示True即可。

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

lijiamingccc

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值