1. 环境准备:
cudnn和CUDA的对应
https://developer.nvidia.com/rdp/cudnn-archive

需要下载两个文件

-
cuda v11.1
链接 :
https://developer.download.nvidia.com/compute/cuda/11.1.0/local_installers/cuda_11.1.0_456.43_win10.exe -
cudnn v8.0.4.30
链接:https://developer.nvidia.com/compute/machine-learning/cudnn/secure/8.1.1.33/11.2_20210301/cudnn-11.2-windows-x64-v8.1.1.33.zip
2. 安装tensorflow-gpu 2.6.0
pycharm中或者cmd中执行 pip install tensorflow-gpu == 2.6.0
安装结果如下:

3. 安装cuda
路径什么的都不要动,选择默认就好
安装过程中选择精简模式,其他自行下一步即可。
4. 解压cudnn
cuDNN文件解压后有bin、include、lib三个文件夹
在CUDA的安装目录:C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.1 里面也有这些文件夹
所以将这cuDNN解压后的文件分别复制到CUDA对应的文件夹里即可!!
5.配置环境变量

6.代码测试
import tensorflow as tf
from tensorflow.python.client import device_lib
print(device_lib.list_local_devices())
print(tf.test.is_gpu_available())
print(tf.config.list_physical_devices('GPU'))
print(tf.config.list_physical_devices('CPU'))

请忽视警告(WARNING),这里只是提示不要使用老版本的验证方式
显示True即可。
本文详细指导了如何在Windows环境下安装TensorFlow-GPU 2.6.0,包括CUDA 11.1的配置、cuDNN的下载与整合,以及环境变量设置。通过代码测试验证GPU可用性,适合初学者和开发者快速上手。
1495

被折叠的 条评论
为什么被折叠?



