题目:
著名的ACM公司租了一层楼,楼层的布局如下:
该楼层共有400个房间,每边200个房间。最近,公司想进行一些调整,其中包括在房间之间移动很多桌子。因为楼道很窄,桌子很大,只有一张桌子能通过楼道,所以有必要指定一个计划来使桌子移动更加高效。将桌子从一个房间移动到另外一个房间可以在10分钟内完成,当桌子从房间i移动到房间j时,从房间i到房间j部分的楼道被占用(闭区间)。在10分钟内,移动多张桌子如果不共享楼道的话,可以同时进行。下面列举了一些同时移动桌子可能的情况和不可能的情况:
对于每一个房间,至多有一张桌子移出或移进,如何找到一种方法使得移动桌子的时间最短?
输入:
输入包含T个测试用例,第一行输入测试用例的个数T,接下来依次输入每个测试用例的数据。每个测试用例的第一行输入需要移动的桌子数N,1<=N<=200,接下来的N行输入两个整数s和t,表示桌子从房间s移动到房间t。每个房间在N行输入中至多出现一次。
输出:
输出每个测试用例移动完所有桌子需要的最少时间。
样例输入:
3
4
10 20
30 40
50 60
70 80
2
1 3
2 200
3
10 100
20 80
30 50
样例输出:
10
20
30
解题思路:
1 将表示区间的数字统一转换成奇数,如[2,4]变为[1,3]
2 如果区间开始数字比结束数字大,则反转区间,如[3,1]反转为[1,3]
3 将区间变为前闭后开区间,如[1,3]变为[1,5)
4 将表示区间的数字统一排序,区间开始数字类型为“S”,区间结束数字类型为“T”,排序时如果数字相同,则类型为“T"的排在前面。
5 设定统计变量count=0。顺序扫描排序后的数组,遇到类型为"S"的数字count++,遇到类型为"T"的数字count--,记录count达到的最大值max。
6 count的最大值max即为两两互斥区间的最大数目,所以最后输出的结果为max*10。
代码:
#include<stdio.h>
struct Node
{
int num;
char type;
};
int partition(struct Node *list, int start, int end)
{
struct Node pivot,temp;
int i,j;
pivot = list[start];
i=start;
j=i+1;
while(j<=end)
{
if(list[j].num < pivot.num || (list[j].num==pivot.num && list[j].type=='T'))
{
i++;
temp = list[j];
list[j] = list[i];
list[i] = temp;
}
j++;
}
temp = list[i];
list[i] = pivot;
list[start]=temp;
return i;
}
void quikSort(struct Node *list, int start, int end)
{
int index;
if(start>=end) return;
index = partition(list, start, end);
quikSort(list, start, index-1);
quikSort(list, index+1, end);
}
int main()
{
int cases,n,i,j,s,t,len,count,max,temp;
struct Node list[400];
scanf("%d", &cases); //输入测试用例数目
for(i=0; i<cases; i++)
{
scanf("%d", &n);
for(j=0; j<n; j++)
{
scanf("%d %d", &s, &t);
//统一转换成奇数
if(s%2==0) s--;
if(t%2==0) t--;
if(s>t){temp=s; s=t; t=temp;}
//转换成前闭后开区间
t+=2;
//保存
list[j*2].num=s;
list[j*2].type='S';
list[j*2+1].num=t;
list[j*2+1].type='T';
}
//排序
len = 2*n;
quikSort(list, 0, len-1);
//计算两两互斥区间的最大数目
max=count=0;
for(j=0; j<len; j++)
{
if(list[j].type=='S')
{
count++;
if(count > max) max=count;
}
else count--;
}
printf("%d\n", max*10);
}
return 0;
}