拉格朗日中值定理
如果函数f(x)满足
那么在(a,b)内至少有一点ξ(a < ξ < b),使等式
成立。此定理称为拉格朗日中值定理。拉格朗日中值定理是罗尔中值定理的推广,同时也是柯西中值定理的特殊情形。
积分中值定理
积分中值定理分为积分第一中值定理和积分第二中值定理,它们各包含两个公式。其退化状态均指在ξ的变化过程中存在一个时刻使两个图形的面积相等(严格表述在下面)。
积分第一中值定理
设 为一连续函数,
为一正的可积函数,那么存在一点
使得
-
。
证明
因为 f 是闭区间上的连续函数,f 取得最大值 M 和最小值 m。于是
-
。
对不等式求积分,我们有
-
。
若 ,则
。ξ 可取 [a,b] 上任一点。
设 ,那么
-
。
因为 是连续函数,则必存在一点
,使得
-
。
推论(拉格朗日中值定理的积分形式)
在上式中令g(x) = 1,则可得出:
设 为一连续函数,则∃
,使
它也可以由拉格朗日中值定理推出:
设F(x)在[a,b]上可导,,则∃
,使
积分第二中值定理
积分第二中值定理与积分第一中值定理相互独立,却又是更精细的积分中值定理。它可以用来证明Dirichlet-Abel 反常 Rieman 积分判别法。
内容
若f,g在[a,b]上黎曼可积且f(x)在[a,b]上单调,则存在[a,b]上的点ξ使
-
;
退化态的几何意义
令g(x)=1,则原公式可化为:
-
;
进而导出: