拉格朗日中值定理推论及用法

拉格朗日中值定理得以下两个推论:

推论1

f ( x ) f(x) f(x) ( a , b ) (a,b) (a,b)内可导, f ′ ( x ) ≡ 0 f'(x)\equiv0 f(x)0,则 f ( x ) f(x) f(x) ( a , b ) (a,b) (a,b)内为常数。

证明:对于 ( a , b ) (a,b) (a,b)内的任意两点 x 1 < x 2 x_1<x_2 x1<x2 ∃ ξ ∈ ( x 1 , x 2 ) \exist \xi\in(x_1,x_2) ξ(x1,x2)使得 f ( x 1 ) − f ( x 2 ) = f ′ ( ξ ) ( x 1 − x 2 ) = 0 f(x_1)-f(x_2)=f'(\xi)(x_1-x_2)=0 f(x1)f(x2)=f(ξ)(x1x2)=0,所以 f ( x ) f(x) f(x) ( a , b ) (a,b) (a,b)内为常数。

推论2

f ′ ( x ) = g ′ ( x ) f'(x)=g'(x) f(x)=g<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值