由拉格朗日中值定理得以下两个推论:
推论1
若 f ( x ) f(x) f(x)在 ( a , b ) (a,b) (a,b)内可导, f ′ ( x ) ≡ 0 f'(x)\equiv0 f′(x)≡0,则 f ( x ) f(x) f(x)在 ( a , b ) (a,b) (a,b)内为常数。
证明:对于 ( a , b ) (a,b) (a,b)内的任意两点 x 1 < x 2 x_1<x_2 x1<x2, ∃ ξ ∈ ( x 1 , x 2 ) \exist \xi\in(x_1,x_2) ∃ξ∈(x1,x2)使得 f ( x 1 ) − f ( x 2 ) = f ′ ( ξ ) ( x 1 − x 2 ) = 0 f(x_1)-f(x_2)=f'(\xi)(x_1-x_2)=0 f(x1)−f(x2)=f′(ξ)(x1−x2)=0,所以 f ( x ) f(x) f(x)在 ( a , b ) (a,b) (a,b)内为常数。
推论2
若 f ′ ( x ) = g ′ ( x ) f'(x)=g'(x) f′(x)=g<