《高等数学》中的积分中值定理

本文介绍了积分中值定理在闭区间和开区间的情况,详细阐述了两种形式的定理及其证明过程。通过连续函数在区间上的性质,证明了存在特定点ξ使得积分的平均值等于该点的函数值。闭区间定理利用介值定理,而开区间定理则借助拉格朗日中值定理。这两个定理在数学分析中有着重要应用。
摘要由CSDN通过智能技术生成

在做题时,用积分中值定理很多时候需要用到去的 ξ \xi ξ是开区间,但在高等数学中的积分中值定理给出的是闭区间,其实这个定理可以中的 ξ \xi ξ在开区间中取得,只是在证明的过程中使用的知识不一样,下面是针对我们的问题介绍这两种形式的积分中值定理以及它们的证明。

(1)闭区间(教材P234性质6)

f f f [ a , b ] [a, b] [a,b] 上连续,则至少存在一点 ξ ∈ ( a , b ) \xi \in(a, b) ξ(a,b) ,使得
∫ a b f ( x ) d x = f ( ξ ) ( b − a ) \int_a^b f(x) d x=f(\xi)(b-a) abf(x)dx=f(ξ)(ba)
f ( ξ ) = 1 b − a ∫ a b f ( x ) d x f(\xi)=\frac{1}{b-a} \int_a^b f(x) d x f(ξ)=ba1abf(x)dx
称等式右端为函数 f ( x ) f(x) f(x) 在闭区间 [ a , b ] [a, b] [a,b] 上的平均值。

证明:因为 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b] 上连续, 故 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b] 上存在最大值 M M M 和最小值 m m m
m ≤ f ( x ) ≤ M ⇒ m ( b − a ) ≤ ∫ a b f ( x ) d x ≤ M ( b − a ) ⇒ m ≤ ∫ a b f ( x ) d x b − a ≤ M m \leq \mathrm{f}(x) \leq \mathrm{M} \Rightarrow m(b-a) \leq \int_{\mathrm{a}}^{\mathrm{b}} f(x) \mathrm{dx} \leq \mathrm{M}(\mathrm{b}-\mathrm{a}) \Rightarrow \mathrm{m} \leq \frac{\int_{\mathrm{a}}^{\mathrm{b}} \mathrm{f}(\mathrm{x}) \mathrm{dx}}{\mathrm{b}-\mathrm{a}} \leq \mathrm{M} mf(x)Mm(ba)abf(x)dxM(ba)mbaabf(x)dxM
由介值定理 ∃ ξ ∈ [ a , b ] \exists \xi \in[a, b] ξ[a,b], 使得 f ( ξ ) = ∫ a b f ( x ) d x b − a f(\xi)=\frac{\int_a^b f(x) d x}{b-a} f(ξ)=baabf(x)dx

(2)开区间的积分中值定理
f ( x ) f(x) f(x) [ a , b ] [a, b] [a,b] 上连续, 则存在 ξ ∈ ( a , b ) \xi \in(a, b) ξ(a,b), 使得 ∫ a b f ( x ) d x = f ( ξ ) ( b − a ) \int_a^b f(x) d x=f(\xi)(b-a) abf(x)dx=f(ξ)(ba)

证明:设 H ( x ) = ∫ a x f ( x ) d x H(x)=\int_a^x f(x) d x H(x)=axf(x)dx, 由拉格朗日中值定理
∃ ξ ∈ ( a , b ) \exists \xi \in(a, b) ξ(a,b), 使得 H ′ ( ξ ) = H ( b ) − H ( a ) b − a H^{\prime}(\xi)=\frac{H(b)-H(a)}{b-a} H(ξ)=baH(b)H(a) f ( ξ ) = ∫ a b f ( x ) d x b − a f(\xi)=\frac{\int_a^b f(x) d x}{b-a} f(ξ)=baabf(x)dx

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值