欧拉路径与欧拉回路
- 什么是欧拉路径?
如果图G中的一个路径包括每个边恰好一次,则该路径称为欧拉路径(Euler path)。
欧拉路径就是一条能够不重不漏地经过图上的每一条边的路径,即小学奥数中的一笔画问题。而若这条路径的起点和终点相同,则将这条路径称为欧拉回路。
- 什么是欧拉回路?
如果一个回路是欧拉路径,则称为欧拉回路(Euler circuit) - 什么是欧拉图?
欧拉图:包含欧拉回路的图。 - 如何判断图中是否存在欧拉回路?
无向图
一个无向图存在欧拉回路,当且仅当该图所有顶点度数都为偶数,且该图是连通图。
有向图
一个有向图存在欧拉回路,所有顶点的入度等于出度且该图是连通图。
欧拉回路
求欧拉回路的思路:
循环的找到出发点。从某个节点开始,然后查出一个从这个出发回到这个点的环路径。这种方法不保证每个边都被遍历。如果有某个点的边没有被遍历就让这个点为起点,这条边为起始边,把它和当前的环衔接上。这样直至所有的边都被遍历。这样,整个图就被连接到一起了。
具体步骤:
- 如果此时与该点无相连的点,那么就加入路径中
- 如果该点有相连的点,那么就加入队列之中,遍历这些点,直到没有相连的点。
- 处理当前的点,删除走过的这条边,并在其相邻的点上进行同样的操作,并把删除的点加入到路径中去。
这个其实是个递归过程。
算法模板
#include<iostream>
#include<stack>
using namespace std;
const int N=500;
int n,tot,c=N,jp[N],cnt[N],edge[N][N];
char a,b;
stack<int> q;
void dfs(int now)
{
for(int i=1;i<=N;i++)
if(edge[now][i]==1)
{
edge[now][i]--,edge[i][now]--;
dfs(i);
}
q.push(now);//加入答案队列
}//算法过程
int main()
{
cin>>n;
for(int i=1;i<=n;i++)
{
cin>>a>>b;
c=min(c,a);
c=min(c,b);
edge[a][b]++,edge[b][a]++;
cnt[a]++;
cnt[b]++;//统计每个节点的度数
}
for(int i=1;i<=N;i++)
if(cnt[i]%2==1)
jp[tot++]=i;//找出度数为奇数的节点
if(tot!=2 && tot)
{
cout<<"No Solution";
return 0;
}//若该图没有欧拉路径则判误
int stat;
if(tot)
stat=min(jp[0],jp[1]);
else
stat=c;//找出起点
dfs(stat);
while(!q.empty())
{
char ct=q.top();
cout<<ct;
q.pop();
}//倒序输出
return 0;
}