欧拉路径与欧拉回路

欧拉路径与欧拉回路

  1. 什么是欧拉路径
    如果图G中的一个路径包括每个边恰好一次,则该路径称为欧拉路径(Euler path)。

欧拉路径就是一条能够不重不漏地经过图上的每一条边的路径,即小学奥数中的一笔画问题。而若这条路径的起点和终点相同,则将这条路径称为欧拉回路。

  1. 什么是欧拉回路
    如果一个回路是欧拉路径,则称为欧拉回路(Euler circuit)
  2. 什么是欧拉图
    欧拉图:包含欧拉回路的图。
  3. 如何判断图中是否存在欧拉回路
    无向图
    一个无向图存在欧拉回路,当且仅当该图所有顶点度数都为偶数,且该图是连通图。
    有向图
    一个有向图存在欧拉回路,所有顶点的入度等于出度且该图是连通图。

欧拉回路

求欧拉回路的思路
循环的找到出发点。从某个节点开始,然后查出一个从这个出发回到这个点的环路径。这种方法不保证每个边都被遍历。如果有某个点的边没有被遍历就让这个点为起点,这条边为起始边,把它和当前的环衔接上。这样直至所有的边都被遍历。这样,整个图就被连接到一起了。

具体步骤:

  1. 如果此时与该点无相连的点,那么就加入路径中
  2. 如果该点有相连的点,那么就加入队列之中,遍历这些点,直到没有相连的点。
  3. 处理当前的点,删除走过的这条边,并在其相邻的点上进行同样的操作,并把删除的点加入到路径中去。

这个其实是个递归过程。

算法模板

#include<iostream>
#include<stack>
using namespace std;
const int N=500;
int n,tot,c=N,jp[N],cnt[N],edge[N][N];
char a,b;
stack<int> q;
void dfs(int now)
{
    for(int i=1;i<=N;i++)
        if(edge[now][i]==1)
        {
            edge[now][i]--,edge[i][now]--;
            dfs(i);
        }
    q.push(now);//加入答案队列
}//算法过程
int main()
{
    cin>>n;
    for(int i=1;i<=n;i++)
    {
        cin>>a>>b;
        c=min(c,a);
        c=min(c,b);
        edge[a][b]++,edge[b][a]++;
        cnt[a]++;
        cnt[b]++;//统计每个节点的度数
    }
    for(int i=1;i<=N;i++)
        if(cnt[i]%2==1)
            jp[tot++]=i;//找出度数为奇数的节点
    if(tot!=2 && tot)
    {
        cout<<"No Solution";
        return 0;
    }//若该图没有欧拉路径则判误
    int stat;
    if(tot)
        stat=min(jp[0],jp[1]);
    else
        stat=c;//找出起点
    dfs(stat);
    while(!q.empty())
    {
        char ct=q.top();
        cout<<ct;
        q.pop();
    }//倒序输出
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值