很多学生,学了四年的计算机专业,很多程序员,做了很长时间的编程工作,却始终搞不懂算法时间复杂度的估算,这不得不说是一件很可悲的事情。因为弄不清楚,也就不去深究自己写的代码是否效率低下了,是不是可以通过优化让计算机更加快速高效。
算法的定义
算法是解决特定问题求解步骤的描述,在计算机中为指令的有限序列,并且每条指令表示一个或多个操作
算法的特征
有穷性,确定性,可行性,输入,输出。
算法的设计的要求
正确性,可读性,健壮性,高效率和低存储量的要求
算法的度量方法
事后统计法,事前分析估算方法
在讲解如何让使用事前估算法之前,我们先给出了函数渐进增长的的定义。
函数的渐进增长:给定两个函数f(n)和g(n),如果存在一个整数N,使得对于所有的n>N,f(n)总是比g(n)大,那么,我们说f(n)的增长渐进快于g(n).于是我们可以得出一个结论,判断一个算法好不好,我们只通过少量的数据是不能做出准确判断的,如果我们可以对比算法的关键执行次数的渐进增长性,基本就可以分析出:某个算法,随着n的变大,它会越来越优于另一种算法,或者说越来越差于另一种算法。然后给出了算法时间复杂度的定义和推导大O阶的步骤。
推导大O阶:
- 用常数1取代运行时间中的所有加法常数
- 在修改后的运行次数函数中,只保留最高阶项
- 如果最高阶项存在且不是1,则去除与这个项相乘的常数
得到的结果就是大O阶
通过这个步骤我们可以得到算法运行次数表达式后,很快得到它的时间复杂度,即大O阶,同时我也提醒大家,其实推导大O阶很容易,但如何得到运行次数的表达却是需要数学功底的。
总结
假设CPU在短短几年间,速度提高了100倍,这其实已经很夸张了,而我们某个算法可以写出的时间复杂度是O(n)的程序却写出了O(n²)的程序,仅仅因为容易想到也容易写。即在O(n²)的时间复杂度算法程序下,速度其实只提高了10倍,而对于O(n)的时间复杂度的算法来说,那才是真的100倍。也就是说,一台老式CPU的计算机运行O(n)的程序和一台速度提高100倍新式CPU运行 O(n²)的程序,最终效率高的胜利方却是老式CPU的计算机,原因在于算法的好坏决定了程序运行的效率。