浮点数的内存存储格式
浮点数内存存储,真心不想仔细看,先放这里,有空再看。
首先说一下原、反、补、移码。 移码其实就等于补码,只是符号相反。对于正数而言。原,反,补码都一样, 对负数而言,反码除符号位外,在原码的基础上按位取反,补码则在反码的基础之上,在其最低位上加1,要求移码时,仍然是先求补码,再改符号。
浮点数分为float和double,分别占4、8个字节,即32、64位。在此以32位的float为例,并附带说double。
在IEEE754标准中,规定,float的32位这样分:
符号位(S) | 阶码(E) | 尾数(M) |
1 | 8 | 23 |
这里应该注意三点:
A.阶码是用移码表示的,这里会有一个127的偏移量,它的127相当于0,小于127时为负,大于127时为正,比如:10000001表示指数为129-127=2,表示真值为2^2,而01111110则表示2^(-1);
B.尾数全都是小数点后面的数;
C.尾数中省略了一个1,因此尾数全为0时,也是1.0…00;
接下来只要说明几个问题就明白了,以123.456为例,表示为二进制就是:N (2) = 1111011.01110100101111001,这里,会右移6位,得到N (2) = 1.11101101110100101111001*2^6; 这种形式就可以用于上图中的表示格式了。
符号位(S) | 阶码 | 尾数(M) |
0 | (E) 00000110 | 11101101110100101111001 |
注意到,上面的阶码第一位为0表正,尾数比N(2)表示的第一位少了个1,这就是上面说的默认为第一位为1。 由于在将十进制转为二进制的过程中,常常不能正好转得相等, (当然,像4.0这样的就不会有损失,而1.0/3.0这样的必然损失),所以就产生了浮点数的精度问题,实际上,小数点后的23位二进制数,能影响的十进制数的前8位,这是为什么呢?其实很简单,在上面表示的尾数中,是二进制的,小数点后有23位,最后一位的值为1时,它就是1/2^22=0.000000238实际取的时候肯定是0.0000002,也就是说,对于一个float型的浮点数,其有效的位数是从左到右数7位(包括缺省的1才是7位),当到达上面这个第8位时,就不可靠了,但VC6可以输出最长的1.0/3.0为0.33333333333333331,这主要是编译器的问题了, 而并不是说浮点数小数点后的16位都有效。 如果不信的话,可以去试一下double类型的1.0/3.0, 得到的也将是小数点后17位。
另外,编译器或电路板一般都有"去噪声"的"修正"能力,它能够使得超过7位的十进制数即使无效了也不会变得离谱,这也是上面为什么一直都是输出333而不是345之类的。可以这样试一下:
float f=123456789;
cout<<f<<endl; //这里肯定得到123456789。
这里有一个被人遗忘的问题,就是10进制小数怎么变为2进制小数,其实很简单,就是将10进的小数部分不断乘以2,进位时就将对应的2进制位写入1。因此将上面的N (2) = 1.11101101110100101111001*2^6;再转回十进制数时,很可能已经不再是123.456了。 好,精度问题应该说清楚了,下面说示数范围。
阶码的示数位数是8位移码,最大为127最小为-127,这里的127用来作为2的指数,因此为2^127,约等于 1.7014*10^38,而我们知道,float的示数范围约为-3.4*10^38—3.4*10^38, 这是因为尾数的24位(默认第一位为1)全为时,非常接近2, 1.11…11很明显约为2,因此浮点数的范围就出来了。
double的情况与float完全相似,只是它的内在形式是:
符号位(S) | 阶码(E) | 尾数(M) |
1 | 11 | 52 |
主要的区别在于它的阶码有11位了,这就有2^1023约等于 0.8572*10^308,尾数53位约为2,故double的示数范围约为 -1.7*10^308—1.7*10^308。至于其精度,同样,1.0/2^51=4.4*10^(-16)。小数点后15位有效,加上缺省的那一位,因此对于double浮点数,从左到右的16位数都是可靠的。
有移码表示阶码有是有原因的,主要是移码便于对阶操作,从而比较两个浮点数的大小。 这里要注意的是,阶码不能达到11111111的形式,IEEE规定,当编译器遇到阶码为0XFF时,即调用溢出指令。 总之,阶码化为整数时,范围是:-127~127。
最后,有一个易于出错,一定要记住,浮点数没有无符号型的unsignedfloat/double是错误的。
浮点数的二进制转换
-12.5:
1. 整数部分12,二进制为1100; 小数部分0.5, 二进制是.1,先把他们连起来,从第一个1数起取24位(后面补0):
1100.10000000000000000000
这部分是有效数字。(把小数点前后两部分连起来再取掉头前的1,就是尾数)
2. 把小数点移到第一个1的后面,需要左移3位, 加上偏移量127:127+3=130,二进制是10000010,这是阶码。
3. -12.5是负数,所以符号位是1。把符号位,阶码和尾数连起来。注意,尾数的第一位总是1,所以规定不存这一位的1,只取后23位:
1 10000010 10010000000000000000000
把这32位按8位一节整理一下,得:
11000001 01001000 00000000 00000000
就是十六进制的 C1480000.
2.025675
1. 整数部分2,二进制为10; 小数部分0.025675, 二进制是.0000011010010010101001,先把他们连起来,从第一个1数起取24位(后面补0):
10.0000011010010010101001
这部分是有效数字。把小数点前后两部分连起来再取掉头前的1,就是尾数: 00000011010010010101001
2. 把小数点移到第一个1的后面,左移了1位, 加上偏移量127:127+1=128,二进制是10000000,这是阶码。
3. 2.025675是正数,所以符号位是0。把符号位,阶码和尾数连起来:
0 10000000 00000011010010010101001
把这32位按8位一节整理一下,得:
01000000 00000001 10100100 10101001
就是十六进制的 4001A4A9.
-1.99744
还需要详细说吗?
如果只有小数部分,那么需要右移小数点. 比如右移3位才能放到第一个1的后面, 阶码就是127-3=124.
浮点二进制数手工转换成十进制数
补充一个浮点二进制数手工转换成十进制数的例子:
假设浮点二进制数是 1011 1101 0100 0000 0000 0000 0000 0000
按1,8,23位分成三段:
1 01111010 10000000000000000000000
最后一段是尾数。前面加上"1.", 就是1.10000000000000000000000
下面确定小数点位置。阶码是01111010,加上00000101才是01111111(127),
所以他减去127的偏移量得-5。(或者化成十进制得122,122-127=-5)。
因此尾数1.10(后面的0不写了)是小数点右移5位的结果。要复原它就要左移5位小数点,得0.0000110, 即十进制的0.046875
最后是符号:1代表负数,所以最后的结果是 -0.046875
还要注意其他机器的浮点数表示方法可能与此不同.