训练DeepLabv3+
训练DeepLabv3+学习记录
最近需要使用语义分割模型进行岩壁裂隙分割,了解到DeepLabv3+可实现该任务,胡jh教师学生黄pl师兄、陈jy教授等业界内有大量使用该算法,且算法较新,效果较好,硬件资源需求中等,可以跑一遍试试。
使用项目为Bubbliiiing所创建,有b站视频教程、博客做参考。
1.环境配置
1.1安装Anaconda
https://blog.csdn.net/Sayega/article/details/143035515
1.2安装CUDA、cuDNN
需要安装对应版本
参考上述地址
1.3下载项目
https://github.com/bubbliiiing/deeplabv3-plus-pytorch
1.4安装Pycharm
1.5安装Pytorch
打开Anaconda Prompt,新建虚拟环境,参考上述地址,安装对应版本
1.6在Pycharm打开项目
打开项目,选择刚才在conda创建的虚拟环境
至此,我们环境配置完成。
2.数据准备
2.1准备数据集
2.1.1可以自己使用Lableme行制作数据集
打开虚拟环境,安装。
https://blog.csdn.net/hhb3329/article/details/127710655spm=1001.2014.3001.5502
打开Lableme,打开一个文件夹,文件夹中全是图片:
picturedir/
├──001.jpg
├──002.jpg
├──…
├──800.jpg
标注。
保存文件得到:
picturedir
├──001.jpg
├──001.json
├──002.jpg
├──002.json
├──…
├──800.json
├──800.jpg
2.1.2也可以自己下载数据集
从kaggle下载数据集
https://www.kaggle.com