数二-函数与极限

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ \star\star\star\star\star\star\star\star\star 基础 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ \star\star\star\star\star\star\star\star\star

a n + 1 = ( a n − 1 ) 2 , a 1 = 0 a_{n+1}=(a_n-1)^2,a_1=0 an+1=(an1)2,a1=0
视频1-21
高等数学教案
洛必达法则及应用
数学函数绘图工具

邻域

U ( a , s ) = { x ∣ ∣ x − a ∣ < s } U(a,s) = \{x||x-a|<s\} U(a,s)={xxa<s}
去心邻域: U ( a , s ) = { x ∣ 0 < ∣ x − a ∣ < s } U(a,s) = \{x|0<|x-a|<s\} U(a,s)={x0<xa<s}

基础公式

( a + b ) 3 = a 3 + b 3 + 3 a b 2 + 3 a 2 b (a+b)^3 =a^3+b^3+3ab^2+3a^2b (a+b)3=a3+b3+3ab2+3a2b
a 3 + b 3 = ( a + b ) ( a 2 − a b + b 2 ) a^3+b^3=(a+b)(a^2-ab+b^2) a3+b3=(a+b)(a2ab+b2)
a 3 − b 3 = ( a − b ) ( a 2 + a b + b 2 ) a^3-b^3=(a-b)(a^2+ab+b^2) a3b3=(ab)(a2+ab+b2)
a 4 + 1 = ( a 2 + 1 + 2 a ) ( a 2 + 1 − 2 a ) a^4+1=(a^2+1+\sqrt{2}a)(a^2+1-\sqrt{2}a) a4+1=(a2+1+2 a)(a2+12 a)
换底公式: log ⁡ a b = log ⁡ c b log ⁡ c a \log_ab=\cfrac{\log_cb}{\log_ca} logab=logcalogcb
x β ≪ e a x ( x → + ∞ ) x^{\beta}\ll e^{ax}(x\to+\infty) xβeax(x+)
lim ⁡ x → 0 + x ln ⁡ x = 0 \lim\limits_{x\to0^+}x\ln x=0 x0+limxlnx=0

数列前n项和

等比: S n = n a 1 , q = 1 S n = a 1 ( 1 − q n ) 1 − q , q ≠ 1 S_n=na_1,q=1\\ S_n=\cfrac{a_1(1-q^n)}{1-q},q\neq1 Sn=na1,q=1Sn=1qa1(1qn),q=1
等差: S n = n ( a 1 + a n ) 2 = n a 1 + n ( n − 1 ) d 2 S_n=\cfrac{n(a_1+a_n)}{2}=na_1+\cfrac{n(n-1)d}{2} Sn=2n(a1+an)=na1+2n(n1)d
裂项相消法

基本不等式

  1. 三角不等式: ∣ ∣ a ∣ − ∣ b ∣ ∣ ≤ ∣ a ± b ∣ ≤ ∣ a ∣ + ∣ b ∣ \begin{vmatrix} |a|-|b| \end{vmatrix}\leq|a\pm b|\leq|a|+|b| aba±ba+b
  2. a b ≤ a + b 2 \sqrt{ab}\le\cfrac{a+b}{2} ab 2a+b重要
  3. 2 a b ≤ a 2 + b 2 2ab\le a^2+b^2 2aba2+b2
  4. sin ⁡ x ≤ x \sin x\le x sinxx
  5. e x ≥ x + 1 e^x\ge x+1 exx+1
  6. x − 1 ≥ ln ⁡ x , 注 意 此 时 lim ⁡ x → 1 ln ⁡ x x − 1 = 1 x-1\ge \ln x,注意此时\lim\limits_{x\to1}\cfrac{\ln x}{x-1}=1 x1lnxx1limx1lnx=1
  7. x − 1 < [ x ] ≤ x x-1\lt[x]\le x x1<[x]x
  8. x + x 2 + A > 0 x+\sqrt{x^2+A}>0 x+x2+A >0
  9. 在这里插入图片描述

基本初等函数

基 本 初 等 函 数 { x a a x log ⁡ a x sin ⁡ x , cos ⁡ x , tan ⁡ x , cot ⁡ x , sec ⁡ x , csc ⁡ x arcsin ⁡ x , arccos ⁡ x , arctan ⁡ x , a r c c o t x 基本初等函数\\ \begin{cases} x^a\\ a^x\\ \log_ax\\ \sin x,\cos x,\tan x,\cot x,\sec x,\csc x\\ \arcsin x,\arccos x,\arctan x,arccot x \end{cases} xaaxlogaxsinx,cosx,tanx,cotx,secx,cscxarcsinx,arccosx,arctanx,arccotx
{ 1 sin ⁡ x = csc ⁡ x 1 cos ⁡ x = sec ⁡ x \begin{cases} \cfrac{1}{\sin x}=\csc x\\ \cfrac{1}{\cos x}=\sec x \end{cases} sinx1=cscxcosx1=secx
{ 1 + tan ⁡ 2 x = sec ⁡ 2 x 1 + cot ⁡ 2 x = csc ⁡ 2 x \begin{cases} 1+\tan^2x=\sec^2x\\ 1+\cot^2x=\csc^2x \end{cases} {1+tan2x=sec2x1+cot2x=csc2x

基础三角函数

各种三角函数图像
基础三角函数
sin ⁡ 2 x = 2 sin ⁡ x cos ⁡ x cos ⁡ 2 x = cos ⁡ 2 x − sin ⁡ 2 x = 2 cos ⁡ x − 1 = 1 − 2 sin ⁡ x sin ⁡ 2 x = 1 − cos ⁡ 2 x 2 cos ⁡ 2 x = 1 + cos ⁡ 2 x 2 tan ⁡ 2 x = 1 − cos ⁡ 2 x 1 + cos ⁡ 2 x arcsin ⁡ x + arccos ⁡ x = π 2 ( − 1 ≤ x ≤ 1 ) arctan ⁡ x + a r c c o t x = π 2 ( − ∞ ≤ x ≤ + ∞ ) sec ⁡ 2 x = 1 + tan ⁡ 2 x \sin 2x=2\sin x\cos x\\ \cos 2x=\cos ^2x-\sin^2x=2\cos x-1=1-2\sin x\\ \sin^2x=\cfrac{1-\cos2x}{2}\\ \cos^2x=\cfrac{1+\cos2x}{2}\\ \tan^2x=\cfrac{1-\cos2x}{1+\cos2x}\\ \arcsin x+\arccos x=\cfrac{\pi}{2}(-1\le x\le1)\\ \arctan x+arccot x=\cfrac{\pi}{2}(-\infty\le x\le+\infty)\\ \sec^2 x=1+\tan^2x sin2x=2sinxcosxcos2x=cos2xsin2x=2cosx1=12sinxsin2x=21cos2xcos2x=21+cos2xtan2x=1+cos2x1cos2xarcsinx+arccosx=2π(1x1)arctanx+arccotx=2π(x+)sec2x=1+tan2x

基础导数

ln ⁡ ( x + x 2 + a ) ′ = 1 x 2 + a \ln(x+\sqrt{x^2+a})^{'}=\cfrac{1}{\sqrt{x^2+a}} ln(x+x2+a )=x2+a 1
基础导数

函数性质的重要结论

  • f ( x ) 在 [ − l , l ] 上 有 定 义 , 则 F 1 ( x ) = f ( x ) − f ( − x ) 为 奇 函 数 , F 2 ( x ) = f ( x ) + f ( − x ) 为 偶 函 数 。 f(x)在[-l,l]上有定义,则F_1(x)=f(x)-f(-x)为奇函数,F_2(x)=f(x)+f(-x)为偶函数。 f(x)[l,l]F1(x)=f(x)f(x)F2(x)=f(x)+f(x)
  • f ( x ) 为 可 导 偶 函 数 , f ′ ( x ) 是 奇 函 数 。 f(x)为可导偶函数,f^{'}(x)是奇函数。 f(x)f(x)
  • f ( x ) 为 可 导 奇 函 数 , f ′ ( x ) 是 偶 函 数 。 f(x)为可导奇函数,f^{'}(x)是偶函数。 f(x)f(x)
  • f ( x ) 为 周 期 为 T 的 周 期 函 数 , f ′ ( x ) 是 周 期 为 T 的 周 期 函 数 。 f(x)为周期为T的周期函数,f^{'}(x)是周期为T的周期函数。 f(x)Tf(x)T
  • f ( x ) 在 有 限 区 间 ( a , b ) 内 可 导 且 f ′ ( x ) 有 界 , 则 f ( x ) 在 ( a , b ) 内 有 界 。 f(x)在有限区间(a,b)内可导且f^{'}(x)有界,则f(x)在(a,b)内有界。 f(x)(a,b)f(x),f(x)(a,b)
  • 对 u , u 3 的 最 值 , 可 研 究 u ; 同 理 ∣ u ∣ 形 式 研 究 u 2 即 可 。 对\sqrt{u},\sqrt[3]{u}的最值,可研究u;同理|u|形式研究\sqrt{u^2}即可。 u 3u uuu2

x a 型 函 数 图 像 x^a型函数图像 xa

x a { a = 0 ; 1 a > 0 { a 为 整 数 { a = 2 n 图 像 单 调 区 间 与 x 2 相 同 a = 2 n + 1 图 像 单 调 区 间 与 x 3 相 同 a 为 小 数 图 像 单 调 区 间 x 相 同 a < 0 { a 为 整 数 { a = 2 n 图 像 单 调 区 间 与 1 x 2 相 同 a = 2 n + 1 图 像 单 调 区 间 与 1 x 相 同 a 为 小 数 图 像 单 调 区 间 1 x 相 同 x^a\begin{cases} a=0;&1\\ a>0&\begin{cases} a为整数& \begin{cases} a=2n&图像单调区间与x^2相同\\ a=2n+1&图像单调区间与x^3相同 \end{cases}\\ a为小数&图像单调区间\sqrt{x}相同 \end{cases}\\\\ a<0&\begin{cases} a为整数& \begin{cases} a=2n&图像单调区间与\cfrac{1}{x^2}相同\\ a=2n+1&图像单调区间与\cfrac{1}{x}相同 \end{cases}\\ a为小数&图像单调区间\cfrac{1}{\sqrt{x}}相同 \end{cases} \end{cases} xaa=0;a>0a<01aa{a=2na=2n+1x2x3x aaa=2na=2n+1x21x1x 1

函数与极限

奇偶性

f ( x ) = f ( − x ) f(x)=f(-x) f(x)=f(x) 偶函数
f ( x ) = − f ( − x ) f(x)=-f(-x) f(x)=f(x) 奇函数
反函数
y = f ( x ) = > x = f ( y ) y = f(x) => x=f(y) y=f(x)=>x=f(y)


例题:
f ( x ) = l n ( x + x 2 + 1 ) f(x)=ln(x+\sqrt{x^2+1}) f(x)=ln(x+x2+1 )
求奇偶性,反函数:
①:奇偶性: x ∈ ( − ∞ , + ∞ ) x\in(-\infty,+\infty) x(,+)
f ( − x ) = l n ( − x + x 2 + 1 = l n ( 1 x + x 2 + 1 ) f(-x)=ln(-x+\sqrt{x^2+1} = ln(\cfrac{1}{x+\sqrt{x^2+1}}) f(x)=ln(x+x2+1 =ln(x+x2+1 1)
= − l n ( x + x 2 + 1 ) = − f ( x ) =-ln(x+\sqrt{x^2+1})\\=-f(x) =ln(x+x2+1 )=f(x)
②:反函数
{ x + x 2 + 1 = e y … ① − x + x 2 + 1 = e − y … ② \begin{cases} x+\sqrt{x^2+1}=e^y\dotso① \\ -x+\sqrt{x^2+1}=e^-y\dots② \end{cases} {x+x2+1 =eyx+x2+1 =ey
由①②得:
x = e y − e − y 2 x=\cfrac{e^y-e^-y}{2} x=2eyey

有界性

增减性


符号函数
s g n ( x ) = { 1 , x > 0 0 , x = 0 − 1 , x < 0 sgn(x)= \begin{cases} 1, x>0\\ 0, x=0\\ -1,x<0 \end{cases} sgn(x)=1,x>00,x=01,x<0

∣ x ∣ = s g n ( x ) ∗ x |x|=sgn(x)*x x=sgn(x)x


数列极限

{ a n } 数 列 a − c o n s t a n t ∀ ξ > 0 , ∃ N > 0 , 当n>N时 \{a_n\} 数列 a-constant\\\forall \xi>0 ,\exist N>0,\text{当n>N时} {an}aconstantξ>0,N>0,n>N
∣ a n − a ∣ < ξ |a_n-a|<\xi ana<ξ
记作:
$ lim ⁡ n → ∞ a n = ξ 或 a n → ξ , n → ∞ \lim\limits _{n\rightarrow\infty}a_n=\xi\text{或}a_n\rightarrow\xi,n\rightarrow\infty nliman=ξanξ,n

例:
lim ⁡ n → ∞ 2 n 2 − 1 2 n 2 + 1 = 1 \lim\limits_{n\rightarrow\infty}\cfrac{2n^2-1}{2n^2+1}=1 nlim2n2+12n21=1
∀ ξ > 0 \forall\xi>0 ξ>0

∣ 2 n 2 − 1 2 n 2 + 1 − 1 ∣ = 2 2 n 2 + 1 < 1 n 2 < ξ \begin{vmatrix} \cfrac{2n^2-1}{2n^2+1}-1 \end{vmatrix}=\cfrac{2}{2n^2+1}<\cfrac{1}{n^2}<\xi 2n2+12n211=2n2+12<n21<ξ
n > 1 ξ n>\sqrt{\cfrac{1}{\xi}} n>ξ1
∃ N = [ 1 ξ ] , 当 n > N 时 \exist N=[\sqrt{\cfrac{1}{\xi}}],当n>N时 N=[ξ1 ],n>N
lim ⁡ n → ∞ 2 n 2 − 1 2 n 2 + 1 = 1 \lim\limits_{n\rightarrow\infty}\cfrac{2n^2-1}{2n^2+1}=1 nlim2n2+12n21=1


性质

三角不等式: ∣ ∣ a ∣ − ∣ b ∣ ∣ ≤ ∣ a ± b ∣ ≤ ∣ a ∣ + ∣ b ∣ \begin{vmatrix} |a|-|b| \end{vmatrix}\leq|a\pm b|\leq|a|+|b| aba±ba+b
1、唯一性: lim ⁡ n → ∞ a n = A , lim ⁡ n → ∞ a n = B , 则 A = B \lim\limits_{n\rightarrow\infty}a_n=A,\lim\limits_{n\rightarrow\infty}a_n=B,则A=B nliman=A,nliman=BA=B
2、有界性
∣ ∣ a n ∣ − ∣ A ∣ ∣ < ξ ↔ ∣ a n ∣ < ξ + ∣ A ∣ \begin{vmatrix} |a_n|-|A| \end{vmatrix}\lt\xi\leftrightarrow|a_n|<\xi+|A| anA<ξan<ξ+A
3、保号性
a n = ( − 1 n + 1 ) n a_n=(-\cfrac{1}{n+1})^n an=(n+11)n

数列与子数列

定理:若数列 { a n } \{a_n\} {an}收敛且极限为A,则任取子数列也收敛且极限为A.
推论:

  1. 若数列 { a n } \{a_n\} {an}存在子数列发散,则数列 { a n } \{a_n\} {an}也发散。
  2. 若数列 { a n } \{a_n\} {an}存在任意个子数列收敛,但是极限不同,则 { a n } \{a_n\} {an}发散。
二阶递推问题

f ( a n + 2 , a n + 1 , a n ) f(a_{n+2},a_{n+1},a_n) f(an+2,an+1,an)类型的数列通项公式,一般可以采用化为一阶递推的形式: f ( a n + 2 , a n + 1 ) = β f ( a n + 1 , a n ) f(a_{n+2},a_{n+1})=\beta f(a_{n+1},a_n) f(an+2,an+1)=βf(an+1,an)的类型解决问题。

递归式极限的几何意义

a n + 1 = f ( a n ) a_{n+1}=f(a_n) an+1=f(an)的数列递归表达式中,取值线等价于 y = f ( x ) y=f(x) y=f(x),y值线等价于 y = x y=x y=x y = x y=x y=x相当于具有传递参数的功能函数(即将上一步的结果赋值给下一步赋值)。
在图像中,两条线相交处,即上一步结果无限逼近下一步赋值时( ∣ a n − a a + 1 ∣ → 0 |a_n-a_{a+1}|\to0 anaa+10),极限存在,且交点就是要求的极值点,若不相交,则不存在极值点。
在这里插入图片描述


函数极限

∀ ξ > 0 , ∃ δ > 0 , 当 0 < ∣ x − a ∣ < δ 时 \forall\xi>0,\exist\delta>0,当0<|x-a|<\delta时 ξ>0,δ>0,0<xa<δ
∣ f ( x ) − A ∣ < ξ |f(x)-A|<\xi f(x)A<ξ
a 为 函 数 f ( x ) , x → a 时 的 极 限 a为函数f(x),x\rightarrow a时的极限 af(x),xa
例:
证: lim ⁡ x → ∞ x 3 − 1 x − 1 = 3 \text{证:}\lim\limits_{x\rightarrow\infty}\cfrac{x^3-1}{x-1}=3 证:xlimx1x31=3
∀ ξ > 0 \forall\xi>0 ξ>0
∣ x 3 − 1 x − 1 − 3 ∣ = ∣ x 2 + x + 1 − 3 ∣ ∣ x + 2 ∣ ∗ ∣ x − 1 ∣ < 4 ∣ x − 1 ∣ < ξ ∴ ∣ x − 1 ∣ < ξ 4 ∴ 取 δ = m i n { ξ 4 , 1 } 当 0 < ∣ x − 1 ∣ < δ 时 , lim ⁡ x → ∞ x 3 − 1 x − 1 = 3 \begin{vmatrix} \cfrac{x^3-1}{x-1}-3 \end{vmatrix} =\begin{vmatrix} x^2+x+1-3 \end{vmatrix}\\ |x+2|*|x-1|<4|x-1|<\xi\\ \therefore|x-1|<\cfrac{\xi}{4}\\ \therefore取\delta=min\{\cfrac{\xi}{4},1\}\\ 当0<|x-1|<\delta时,\lim\limits_{x\rightarrow\infty}\cfrac{x^3-1}{x-1}=3 x1x313=x2+x+13x+2x1<4x1<ξx1<4ξδ=min{4ξ,1}0<x1<δxlimx1x31=3

Case1: x → + ∞ ∀ ξ > 0 , ∃ X > 0 , 当 x > X 时 x\to+\infty\\\forall\xi>0,\exist X>0,当x>X时 x+ξ>0,X>0,x>X
∣ f ( x ) − A ∣ < ξ |f(x)-A|<\xi f(x)A<ξ
称 A 为 f ( x ) , 当 x → + ∞ 时 的 极 限 。 称A为f(x),当x\to+\infty时的极限。 Af(x),x+
例:
证 : lim ⁡ x → + ∞ 2 x 2 x 2 + 1 = 2 证:\lim\limits_{x\rightarrow+\infty}\cfrac{2x^2}{x^2+1}=2 x+limx2+12x2=2
∀ ξ > 0 \forall\xi>0 ξ>0
∣ 2 x 2 x 2 + 1 − 2 ∣ = ∣ 2 x 2 + 1 ∣ < ∣ 1 x 2 ∣ < ξ ∴ x > 1 ξ \begin{vmatrix} \cfrac{2x^2}{x^2+1}-2 \end{vmatrix}= \begin{vmatrix} \cfrac{2}{x^2+1} \end{vmatrix}<\\|\cfrac{1}{x^2}|<\xi\\ \therefore x>\sqrt{\cfrac{1}{\xi}} x2+12x22=x2+12<x21<ξx>ξ1
取 X = 1 ξ , 当 x > X 时 ∣ 2 x 2 x 2 + 1 − 2 ∣ < ξ 取X=\sqrt{\cfrac{1}{\xi}},当x>X时 \begin{vmatrix} \cfrac{2x^2}{x^2+1}-2 \end{vmatrix}<\xi X=ξ1 x>Xx2+12x22<ξ
∴ lim ⁡ x → + ∞ 2 x 2 x 2 + 1 = 2 \therefore\lim\limits_{x\rightarrow+\infty}\cfrac{2x^2}{x^2+1}=2 x+limx2+12x2=2


性质

1、唯一性
2、局部保号性
lim ⁡ x → a f ( x ) = A > 0 ( < 0 ) \lim\limits_{x\to a}f(x)=A>0(<0) xalimf(x)=A>0(<0)
∃ δ > 0 , 当 0 < ∣ x − a ∣ < δ 时 f ( x ) > 0 ( < 0 ) \exist\delta>0,当0<|x-a|<\delta时 \\f(x)>0(<0) δ>0,0<xa<δf(x)>0(<0)
3、局部有界性
lim ⁡ x → + ∞ f ( x ) = M ⇒ ∃ X > 0 , M > 0 , 当 x > X 时 \lim\limits_{x\rightarrow+\infty}f(x)=M\rArr\exist X>0,M>0,当x>X时 x+limf(x)=MX>0,M>0,x>X
∣ f ( x ) ∣ ≤ M |f(x)|\le M f(x)M

4、无穷小,无穷大
∀ ξ > 0 , ∃ δ > 0 , 当 0 < ∣ x − a ∣ < δ 时 \forall \xi>0, \exist \delta>0,当0<|x-a|<\delta时 ξ>0,δ>0,0<xa<δ
∣ f ( x ) − 0 ∣ < ξ 即 |f(x)-0|<\xi 即 f(x)0<ξ
lim ⁡ x → a f ( x ) = 0 \lim\limits_{x\to a}f(x)=0 xalimf(x)=0
称 f ( x ) 当 x → a 时 的 无 穷 小 称f(x)当x\to a时的无穷小 f(x)xa
∀ M > 0 , ∃ δ > 0 , 当 0 < ∣ x − a ∣ < δ 时 \forall M>0,\exist \delta>0,当0<|x-a|< \delta 时 M>0,δ>0,0<xa<δ
∣ f ( x ) ∣ ≥ M |f(x)| \geq M f(x)M
称 f ( x ) 当 x → a 时 的 无 穷 大 称f(x)当x\to a时的无穷大 f(x)xa


运算法则

引理1: lim ⁡ x → a f ( x ) = A ⇒ f ( x ) = A + α \lim\limits_{x\to a}f(x) = A \rArr f(x) = A+\alpha xalimf(x)=Af(x)=A+α
引理2:① α → 0 , β → 0 ( x → a ) ⇒ α ± β → 0 ( x → a ) \alpha\rightarrow0,\beta\rightarrow0(x\rightarrow a)\rArr\alpha\pm\beta\rightarrow0(x\rightarrow a) α0,β0(xa)α±β0(xa)
α → 0 , ∣ β ∣ ≤ M ⇒ α β → 0 ( x → 0 ) \alpha\rightarrow0,|\beta|\le M \rArr\alpha\beta\rightarrow0(x\rightarrow0) α0,βMαβ0(x0)
如: lim ⁡ x → a x 2 s i n 1 x = 0 \lim\limits_{x\rightarrow a}x^2sin\cfrac{1}{x}=0 xalimx2sinx1=0
α → 0 ( x → a ) , β = c o n s t a n t ⇒ α β → 0 \alpha\rightarrow 0(x\rightarrow a),\beta=constant\rArr \alpha\beta\rightarrow0 α0(xa),β=constantαβ0
α → 0 , β → 0 ( x → a ) ⇒ α β → 0 ( x → a ) \alpha\rightarrow0,\beta\rightarrow0(x\rightarrow a)\rArr\alpha\beta\rightarrow 0(x\rightarrow a) α0,β0(xa)αβ0(xa)
定理: lim ⁡ f ( x ) = A , lim ⁡ f ( x ) = B \lim f(x)=A,\lim f(x) = B limf(x)=A,limf(x)=B
lim ⁡ f ( x ) g ( x ) = A ∗ B \lim f(x)g(x)=A*B limf(x)g(x)=AB
lim ⁡ f ( x ) ± g ( x ) = A ± B \lim f(x)\pm g(x)=A\pm B limf(x)±g(x)=A±B
lim ⁡ f ( x ) g ( x ) = A B ( B ≠ 0 ) \lim \cfrac{f(x)}{g(x)}=\cfrac{A}{B}(B\neq0) limg(x)f(x)=BA(B=0)
例1: lim ⁡ x → 1 x 2 + x − 2 x 2 − 1 = lim ⁡ x → 1 ( x − 1 ) ( x + 2 ) ( x − 1 ) ( x + 1 ) = lim ⁡ x → 1 x + 2 x + 1 = 3 2 \lim\limits_{x\to1}\cfrac{x^2+x-2}{x^2-1}\\ =\lim\limits_{x\to1}\cfrac{(x-1)(x+2)}{(x-1)(x+1)}\\ =\lim\limits_{x\to1}\cfrac{x+2}{x+1}\\ =\cfrac{3}{2} x1limx21x2+x2=x1lim(x1)(x+1)(x1)(x+2)=x1limx+1x+2=23
例2: lim ⁡ x → ∞ x 2 + 2 x + 4 2 x 2 + x = lim ⁡ x → ∞ 1 + 2 x + 4 x 2 2 + 1 x = 1 2 \lim\limits_{x\to\infty}\cfrac{x^2+2x+4}{2x^2+x}\\ =\lim\limits_{x\to\infty}\cfrac{1+\cfrac{2}{x}+\cfrac{4}{x^2}}{2+\cfrac{1}{x}}\\ =\cfrac{1}{2} xlim2x2+xx2+2x+4=xlim2+x11+x2+x24=21

注:
P ( x ) = a n x n + ⋯ + a 1 x + a 0 Q ( x ) = b m x m + ⋯ + b 1 x + b 0 ( a n ≠ 0 , b m ≠ 0 ) lim ⁡ x → ∞ P ( x ) Q ( x ) = { ∞ , n > m a n b n , n = m 0 , n < m P(x)=a_nx^n+\dots+a_1x+a_0\\ Q(x)=b_mx^m+\dots+b_1x+b_0(a_n\neq0,b_m\neq0)\\ \lim\limits_{x\to\infty}\cfrac{P(x)}{Q(x)}= \begin{cases} \infty, n>m\\ \cfrac{a_n}{b_n}, n=m\\ 0,n<m \end{cases} P(x)=anxn++a1x+a0Q(x)=bmxm++b1x+b0(an=0,bm=0)xlimQ(x)P(x)=,n>mbnan,n=m0,n<m

存在准则

夹逼定理

数列型
{ a n < = b n < = c n lim ⁡ n → ∞ a n = lim ⁡ n → ∞ c n = A ⇒ lim ⁡ n → ∞ c n = A \begin{cases} a_n<=b_n<=c_n\\ \lim\limits_{n\to\infty}a_n=\lim\limits_{n\to\infty}c_n=A \end{cases}\rArr\lim\limits_{n\to\infty}c_n=A {an<=bn<=cnnliman=nlimcn=Anlimcn=A
函数型
{ f ( x ) < = g ( x ) < = t ( x ) lim ⁡ n → ∞ f ( x ) = lim ⁡ n → ∞ t ( x ) = A ⇒ lim ⁡ n → ∞ g ( x ) = A \begin{cases} f(x)<=g(x)<=t(x)\\ \lim\limits_{n\to\infty}f(x)=\lim\limits_{n\to\infty}t(x)=A \end{cases}\rArr\lim\limits_{n\to\infty}g(x)=A {f(x)<=g(x)<=t(x)nlimf(x)=nlimt(x)=Anlimg(x)=A

单调有界函数必有极限

{ 无 上 界 : lim ⁡ x → + ∞ a n = + ∞ 有 上 界 : ∃ M , ∀ a n ≤ M \begin{cases} 无上界: \lim\limits_{x\to+\infty}a_n=+\infty\\ 有上界:\exist M,\forall a_n\le M \end{cases} {:x+liman=+:M,anM
{ 无 下 界 : lim ⁡ x → − ∞ a n = − ∞ 有 下 界 : ∃ M , ∀ a n ≥ M \begin{cases} 无下界: \lim\limits_{x\to-\infty}a_n=-\infty\\ 有下界:\exist M,\forall a_n\ge M \end{cases} {:xliman=:M,anM

例1: a 1 = 2 , a 2 = 2 + 2 , a 3 = 2 + 2 + 2 , … a_1=\sqrt{2},a_2=\sqrt{2+\sqrt{2}},a_3=\sqrt{2+\sqrt{2+\sqrt{2}}},\dots a1=2 ,a2=2+2 ,a3=2+2+2 ,
证明极限是否存在,并求此数列的极限。

证: a 1 = 2 , a n + 1 = 2 + a n ∴ { a n } 单 调 递 增 现 证 : a n ≤ 2 a_1=\sqrt{2},a_{n+1}=\sqrt{2+a_n}\\ \therefore \{a_n\}单调递增\\ 现证:a_n\le2 a1=2 ,an+1=2+an {an}an2
a 1 ≤ 2 设 a k ≤ 2 a k + 1 = 2 + a k ≤ 2 ∀ n , a n ≤ 2 ∴ lim ⁡ n → ∞ a n 存 在 令 lim ⁡ n → ∞ a n = A a n + 1 = 2 + a n … … 同 时 取 极 限 A = 2 + A ∴ A 2 − A − 2 = 0 ∴ A = − 1 ( 舍 去 ) A = 2 a_1\le2\\ 设a_k\le2\\ a_{k+1}=\sqrt{2+a_k}\le2\\ \forall n,a_n\le2\\ \therefore\lim\limits_{n\to\infty}a_n存在\\ 令\lim\limits_{n\to\infty}a_n=A\\ a_{n+1}=\sqrt{2+a_n}\dots\dots同时取极限\\ A=\sqrt{2+A}\\ \therefore A^2-A-2=0\\ \therefore A=-1(舍去)A=2 a12ak2ak+1=2+ak 2n,an2nlimannliman=Aan+1=2+an A=2+A A2A2=0A=1()A=2

例2: a 1 = 2 , a n + 1 = 1 2 ( a n + 1 a n ) . 证 明 lim ⁡ n → ∞ a n 存 在 . a_1=2,a_{n+1}=\cfrac{1}{2}\bigg(a_n+\cfrac{1}{a_n}\bigg).证明\lim\limits_{n\to\infty}a_n存在. a1=2,an+1=21(an+an1).nliman.

证: a n + 1 = 1 2 ( a n + 1 a n ) ≥ 1 a_{n+1}=\cfrac{1}{2}\bigg(a_n+\cfrac{1}{a_n}\bigg)\ge1 an+1=21(an+an1)1
a 1 ≥ 1 ∴ { a n } 有 下 界 a n + 1 − a n = 1 2 ( 1 a n − a n ) = 1 2 ( 1 − a n 2 a n ) < 0 ∴ a n 数 列 递 减 ∴ lim ⁡ n → ∞ a n 存 在 a_1\ge1\\ \therefore \{a_n\}有下界\\ a_{n+1}-a_n=\cfrac{1}{2}\bigg(\cfrac{1}{a_n}-a_n\bigg)\\ =\cfrac{1}{2}\bigg(\cfrac{1-a_n^2}{a_n}\bigg)\\ \lt0\\ \therefore a_n数列递减\\ \therefore\lim\limits_{n\to\infty}a_n存在 a11{an}an+1an=21(an1an)=21(an1an2)<0annliman


两个重要极限

lim ⁡ x → 0 s i n x x = 1 , lim ⁡ x → ∞ ( 1 + 1 x ) x = e , ( lim ⁡ x → 0 ( 1 + x ) 1 x = e ) \lim\limits_{x\to0}\cfrac{sinx}{x}=1,\lim\limits_{x\to\infty}(1+\cfrac{1}{x})^x=e ,\bigg(\lim\limits_{x\to0}(1+x)^{\cfrac{1}{x}}=e\bigg) x0limxsinx=1,xlim(1+x1)x=e,(x0lim(1+x)x1=e)

例题

例1: lim ⁡ n → ∞ ( n + 1 ) n + 1 n n s i n 1 n \lim\limits_{n\to\infty}\cfrac{(n+1)^{n+1}}{n^n}sin\cfrac{1}{n} nlimnn(n+1)n+1sinn1

证 : lim ⁡ n → ∞ ( n + 1 ) n + 1 n n s i n 1 n = lim ⁡ n → ∞ ( n + 1 ) n + 1 n n + 1 ∗ s i n 1 n 1 n = lim ⁡ n → ∞ ( 1 + 1 n ) n + 1 ∗ s i n 1 n 1 n = e 证:\lim\limits_{n\to\infty}\cfrac{(n+1)^{n+1}}{n^n}sin\cfrac{1}{n}\\ =\lim\limits_{n\to\infty}\cfrac{(n+1)^{n+1}}{n^{n+1}}*\cfrac{sin\cfrac{1}{n}}{\cfrac{1}{n}}\\ =\lim\limits_{n\to\infty}\bigg(1+\cfrac{1}{n}\bigg)^{n+1}*\cfrac{sin\cfrac{1}{n}}{\cfrac{1}{n}}\\ =e nlimnn(n+1)n+1sinn1=nlimnn+1(n+1)n+1n1sinn1=nlim(1+n1)n+1n1sinn1=e

例2: lim ⁡ x → ∞ ( 1 − 1 x ) 2 x \lim\limits_{x\to\infty}(1-\cfrac{1}{x})^{2x} xlim(1x1)2x

证 : lim ⁡ x → ∞ [ ( 1 − 1 x ) − x ] − 2 = e − 2 证:\lim\limits_{x\to\infty}\bigg[(1-\cfrac{1}{x})^{-x}\bigg]^{-2}=e^{-2} :xlim[(1x1)x]2=e2

例3: lim ⁡ n → ∞ ( ∑ k = 1 n 1 k ( k + 1 ) ) n \lim\limits_{n\to\infty}\bigg(\sum\limits^{n}_{k=1}\cfrac{1}{k(k+1)}\bigg)^n nlim(k=1nk(k+1)1)n

证 : lim ⁡ n → ∞ ( 1 − 1 n + 1 ) n = lim ⁡ n → ∞ { [ 1 + ( 1 − ( n + 1 ) ) ] − ( 1 + n ) } − n 1 + n = e lim ⁡ n → ∞ − n n + 1 = e − 1 证:\lim\limits_{n\to\infty}\bigg(1-\cfrac{1}{n+1}\bigg)^n\\ =\lim\limits_{n\to\infty}\bigg\{\bigg[1+\big(\cfrac{1}{-(n+1)}\big)\bigg]^{-(1+n)}\bigg\}^{-\cfrac{n}{1+n}}\\ =e^{\lim\limits_{n\to\infty}-\cfrac{n}{n+1}}\\ =e^{-1} :nlim(1n+11)n=nlim{[1+((n+1)1)](1+n)}1+nn=enlimn+1n=e1

例4: lim ⁡ x → 0 ( 1 + t a n x 1 + s i n x ) 1 x 3 \lim\limits_{x\to0}\bigg(\cfrac{1+tanx}{1+sinx}\bigg)^{\cfrac{1}{x^3}} x0lim(1+sinx1+tanx)x31

证 : lim ⁡ x → 0 ( 1 + t a n x 1 + s i n x ) 1 x 3 = lim ⁡ x → 0 [ ( 1 + t a n x − s i n x 1 + s i n x ) 1 + s i n x t a n x − s i n x ] 1 x 3 ∗ t a n x − s i n x 1 + s i n x = e lim ⁡ x → 0 1 1 + s i n x t a n x − s i n x x 3 = e lim ⁡ x → 0 t a n x − s i n x x 3 = e lim ⁡ x → 0 t a n x x ∗ 1 − c o s x x 2 = e 1 2 证:\lim\limits_{x\to0}\bigg(\cfrac{1+tanx}{1+sinx}\bigg)^{\cfrac{1}{x^3}}\\ =\lim\limits_{x\to0}\bigg[\bigg(1+\cfrac{tanx-sinx}{1+sinx}\bigg)^{\cfrac{1+sinx}{tanx-sinx}}\bigg]^{\cfrac{1}{x^3}*\cfrac{tanx-sinx}{1+sinx}}\\ =e^{\lim\limits_{x\to0}\cfrac{1}{1+sinx}\cfrac{tanx-sinx}{x^3}}\\ =e^{\lim\limits_{x\to0}\cfrac{tanx-sinx}{x^3}}\\ =e^{\lim\limits_{x\to0}}\cfrac{tanx}{x}*\cfrac{1-cosx}{x^2}\\ =e^{\cfrac{1}{2}} x0lim(1+sinx1+tanx)x31=x0lim[(1+1+sinxtanxsinx)tanxsinx1+sinx]x311+sinxtanxsinx=ex0lim1+sinx1x3tanxsinx=ex0limx3tanxsinx=ex0limxtanxx21cosx=e21

无穷小比较

β → 0 , α → 0 ① : lim ⁡ β α = 0 , β 是 α 的 高 阶 无 穷 小 . ② : lim ⁡ β α = k ( k ≠ 0 , k ≠ 1 ) , β 是 α 的 同 阶 无 穷 小 . ③ : lim ⁡ β α = 1 , β 是 α 的 等 价 无 穷 小 . 记 β ∽ α \beta\to0,\alpha\to0\\ ①:\lim\cfrac{\beta}{\alpha}=0,\beta是\alpha的高阶无穷小.\\ ②:\lim\cfrac{\beta}{\alpha}=k (k\neq0,k\neq1),\beta是\alpha的同阶无穷小.\\ ③:\lim\cfrac{\beta}{\alpha}=1,\beta是\alpha的等价无穷小.记\beta\backsim\alpha β0,α0limαβ=0,βα.limαβ=k(k=0,k=1),βα.limαβ=1,βα.βα

常用等价无穷小

s i n x ∽ x t a n x ∽ x a r c s i n x ∽ x a r c t a n x ∽ x e x − 1 ∽ x l n ( 1 + x ) ∽ x a x − 1 ∽ x l n a ( a > 0 , a ≠ 1 ) log ⁡ a ( 1 + x ) ∽ x l n a ( a > 0 , a ≠ 1 ) 1 − c o s x ∽ 1 2 x 2 ( 1 + β x ) α − 1 ∽ α β x ( 1 + x ) α − 1 ∽ α x sinx\backsim x\\ tanx\backsim x\\ arcsinx\backsim x\\ arctanx\backsim x\\ e^x-1\backsim x\\ ln(1+x)\backsim x\\ a^x-1\backsim xlna(a\gt0,a\neq1)\\ \log_a(1+x)\backsim \cfrac{x}{lna}(a\gt0,a\neq1)\\ 1-cosx\backsim \cfrac{1}{2}x^2\\ (1+\beta x)^\alpha-1\backsim \alpha\beta x\\ (1+x)^\alpha-1\backsim \alpha x\\ sinxxtanxxarcsinxxarctanxxex1xln(1+x)xax1xlna(a>0,a=1)loga(1+x)lnax(a>0,a=1)1cosx21x2(1+βx)α1αβx(1+x)α1αx

例1: lim ⁡ x → 0 ( 1 + x 2 ) 1 3 − 1 c o s x − 1 \lim\limits_{x\to0}\cfrac{(1+x^2)^\cfrac{1}{3}-1}{cosx-1} x0limcosx1(1+x2)311

I 1 = lim ⁡ x → 0 ( 1 + x 2 ) 1 3 − 1 lim ⁡ x → 0 ( c o s x − 1 ) = 1 3 x 2 − 1 2 x 2 = − 2 3 I 2 = lim ⁡ x → 0 e 1 / 3 ∗ ln ⁡ ( 1 + x 2 ) − 1 c o s x − 1 = lim ⁡ x → 0 ln ⁡ ( 1 + x 2 ) ∗ 1 3 c o s x − 1 = 1 3 x 2 − 1 2 x 2 = − 2 3 I_1=\cfrac{\lim\limits_{x\to0}(1+x^2)^\cfrac{1}{3}-1}{\lim\limits_{x\to0}(cosx-1)}\\ =\cfrac{\cfrac{1}{3}x^2}{-\cfrac{1}{2}x^2}\\ =-\cfrac{2}{3}\\ I_2=\lim\limits_{x\to0}\cfrac{e^{1/3*\ln(1+x^2)}-1}{cosx-1}\\ =\lim\limits_{x\to0}\cfrac{\ln(1+x^2)*\cfrac{1}{3}}{cosx-1}\\ =\cfrac{\cfrac{1}{3}x^2}{-\cfrac{1}{2}x^2}\\ =-\cfrac{2}{3} I1=x0lim(cosx1)x0lim(1+x2)311=21x231x2=32I2=x0limcosx1e1/3ln(1+x2)1=x0limcosx1ln(1+x2)31=21x231x2=32

例2: lim ⁡ x → 0 ( 1 + 2 x ) x − 1 x s i n x \lim\limits_{x\to0}\cfrac{(1+2x)^x-1}{xsinx} x0limxsinx(1+2x)x1

I = lim ⁡ x → 0 e x ln ⁡ ( 1 + 2 x ) − 1 x 2 = lim ⁡ x → 0 x ln ⁡ ( 1 + 2 x ) x 2 = lim ⁡ x → 0 2 x 2 x 2 = 2 I=\lim\limits_{x\to0}\cfrac{e^{x\ln(1+2x)}-1}{x^2}\\ =\lim\limits_{x\to0}\cfrac{x\ln(1+2x)}{x^2}\\ =\lim\limits_{x\to0}\cfrac{2x^2}{x^2}\\ =2 I=x0limx2exln(1+2x)1=x0limx2xln(1+2x)=x0limx22x2=2

例3: lim ⁡ x → 0 e t a n x − e s i n x x 3 \lim\limits_{x\to0}\cfrac{e^{tanx}-e^{sinx}}{x^3} x0limx3etanxesinx

I = lim ⁡ x → 0 e s i n x ∗ e t a n x − s i n x − 1 x 3 = lim ⁡ x → 0 t a n x − s i n x x 3 = lim ⁡ x → 0 t a n x x ∗ 1 − c o s x x 2 = 1 2 I=\lim\limits_{x\to0}e^{sinx}*\cfrac{e^{tanx-sinx}-1}{x^3}\\ =\lim\limits_{x\to0}\cfrac{tanx-sinx}{x^3}\\ =\lim\limits_{x\to0}\cfrac{tanx}{x}*\cfrac{1-cosx}{x^2}\\ =\cfrac{1}{2} I=x0limesinxx3etanxsinx1=x0limx3tanxsinx=x0limxtanxx21cosx=21

连续性与间断点

f ( x ) 在 x 0 邻 域 内 有 定 义 , lim ⁡ x → x 0 f ( x ) = f ( x 0 ) , 则 称 f ( x ) 在 x 0 处 连 续 . f(x)在x_0邻域内有定义,\lim\limits_{x\to x_0}f(x)=f(x_0),则称f(x)在x_0处连续. f(x)x0,xx0limf(x)=f(x0)f(x)x0.

第 一 类 间 断 点 { f ( a + 0 ) = f ( a − 0 ) ≠ f ( a ) 可 去 间 断 点 f ( a + 0 ) ≠ f ( a − 0 ) 跳 跃 间 断 点 第一类间断点 \begin{cases} f(a+0)=f(a-0)\neq f(a)可去间断点\\ f(a+0)\neq f(a-0) 跳跃间断点 \end{cases} {f(a+0)=f(a0)=f(a)f(a+0)=f(a0)
其他,第二类间断点


习题: lim ⁡ x → 1 x 2 − x + 1 ( x − 1 ) 2 \lim\limits_{x\to1}\cfrac{x^2-x+1}{(x-1)^2} x1lim(x1)2x2x+1

I = ∞ I=\infty I=

lim ⁡ x → ∞ x ( x 2 + 1 − x ) \lim\limits_{x\to\infty}x(\sqrt{x^2+1}-x) xlimx(x2+1 x)

I = lim ⁡ x → ∞ x 2 + 1 − x 1 x = lim ⁡ x → ∞ 1 + 1 x 2 − 1 1 x 2 t = 1 x 2 , t → 0 = lim ⁡ t → 0 1 + t − 1 t … 洛 必 达 = lim ⁡ t → 0 1 2 1 + t = 1 / 2 I=\lim\limits_{x\to\infty}\cfrac{\sqrt{x^2+1}-x}{\cfrac{1}{x}}\\ =\lim\limits_{x\to\infty}\cfrac{\sqrt{1+\cfrac{1}{x^2}}-1}{\cfrac{1}{x^2}}\\ t=\cfrac{1}{x^2},t\to0\\ =\lim\limits_{t\to0}\cfrac{\sqrt{1+t}-1}{t}\dots洛必达\\ =\lim\limits_{t\to0}\cfrac{1}{2\sqrt{1+t}}\\ =1/2 I=xlimx1x2+1 x=xlimx211+x21 1t=x21,t0=t0limt1+t 1=t0lim21+t 1=1/2

lim ⁡ x → ∞ ( 2 x + 3 2 x + 1 ) x + 1 \lim\limits_{x\to\infty}\bigg(\cfrac{2x+3}{2x+1}\bigg)^{x+1} xlim(2x+12x+3)x+1

I = lim ⁡ x → ∞ [ ( 1 + 2 2 x + 1 ) 2 x + 1 2 ] ( x + 1 ) ∗ 2 2 x + 1 = e lim ⁡ x → ∞ 2 x + 2 2 x + 1 = e lim ⁡ x → ∞ ( 1 + 1 2 x + 1 ) = e I=\lim\limits_{x\to\infty}\bigg[\bigg(1+\cfrac{2}{2x+1}\bigg)^{\cfrac{2x+1}{2}}\bigg]^{(x+1)*\cfrac{2}{2x+1}}\\ =e^{\lim\limits_{x\to\infty}\cfrac{2x+2}{2x+1}}\\ =e^{\lim\limits_{x\to\infty}\big(1+\cfrac{1}{2x+1}\big)}\\ =e I=xlim[(1+2x+12)22x+1](x+1)2x+12=exlim2x+12x+2=exlim(1+2x+11)=e

lim ⁡ x → 0 t a n x − s i n x x 3 \lim\limits_{x\to0}\cfrac{tanx-sinx}{x^3} x0limx3tanxsinx

I = lim ⁡ x → 0 t a n x x ∗ 1 − c o s x x 2 = 1 2 I=\lim\limits_{x\to0}\cfrac{tanx}{x}*\cfrac{1-cosx}{x^2}\\ =\cfrac{1}{2} I=x0limxtanxx21cosx=21

lim ⁡ x → 0 ( a x + b x + c x 3 ) 1 / x ( a > 0 , b > 0 , c > 0 ) \lim\limits_{x\to0}\bigg(\cfrac{a^x+b^x+c^x}{3}\bigg)^{1/x}(a>0,b>0,c>0) x0lim(3ax+bx+cx)1/x(a>0,b>0,c>0)

I = lim ⁡ x → 0 e ln ⁡ ( a x + b x + c x 3 ) x = lim ⁡ x → 0 e a x ln ⁡ a + b x ln ⁡ b + c x ln ⁡ c a x + b x + c x = e ln ⁡ a + ln ⁡ b + ln ⁡ c 3 = ( a b c ) 1 / 3 I=\lim\limits_{x\to0}e^{\tiny\cfrac{\ln(\tiny\cfrac{a^x+b^x+c^x}{3})}{x}}\\ =\lim\limits_{x\to0}e^{\tiny\cfrac{a^x\ln a+b^x\ln b+c^x\ln c}{a^x+b^x+c^x}}\\ =e^{\tiny\cfrac{\ln a+\ln b+\ln c}{3}}\\ =(abc)^{1/3} I=x0limexln(3ax+bx+cx)=x0limeax+bx+cxaxlna+bxlnb+cxlnc=e3lna+lnb+lnc=(abc)1/3

lim ⁡ x → π / 2 ( s i n x ) t a n x \lim\limits_{x\to\pi/2}(sinx)^{tanx} xπ/2lim(sinx)tanx

I = lim ⁡ x → π / 2 e t a n x ln ⁡ ( s i n x ) = lim ⁡ x → π / 2 e l n ( s i n x ) 1 / t a n x = e lim ⁡ x → π / 2 ln ⁡ ( s i n x ) 1 / t a n x = e lim ⁡ x → π / 2 c o s x / s i n x − s e c 2 x / t a n 2 x = e lim ⁡ x → π / 2 − c o s x ∗ s i n x = 1 I=\lim\limits_{x\to\pi/2}e^{tanx\ln(sinx)}\\ =\lim\limits_{x\to\pi/2}e^{\tiny\cfrac{ln(sinx)}{1/tanx}}\\ =e^{\lim\limits_{x\to\pi/2}\tiny\cfrac{\ln(sinx)}{1/tanx}}\\ =e^{\lim\limits_{x\to\pi/2}\tiny\cfrac{cosx/sinx}{-sec^2x/tan^2x}}\\ =e^{\lim\limits_{x\to\pi/2}-cosx*sinx}\\ =1 I=xπ/2limetanxln(sinx)=xπ/2lime1/tanxln(sinx)=exπ/2lim1/tanxln(sinx)=exπ/2limsec2x/tan2xcosx/sinx=exπ/2limcosxsinx=1

lim ⁡ x → a l n x − l n a x − a ( a > 0 ) \lim\limits_{x\to a}\cfrac{lnx-lna}{x-a} (a>0) xalimxalnxlna(a>0)

I = lim ⁡ x → a 1 x = 1 a I = \lim\limits_{x\to a}\cfrac{1}{x}\\ =\cfrac{1}{a} I=xalimx1=a1

lim ⁡ x → 0 x t a n x 1 − x 2 − 1 \lim\limits_{x\to0}\cfrac{xtanx}{\sqrt{1-x^2}-1} x0lim1x2 1xtanx

I = lim ⁡ x → 0 x 2 − 1 x x 2 = 1 I=\lim\limits_{x\to0}\cfrac{x^2}{-\cfrac{1}{x}x^2}\\ =1 I=x0limx1x2x2=1

函数在闭区间的连续性

f ( x ) ∈ c [ a , b ] ⇒ { ( a , b ) 点 点 连 续 f ( a ) = f ( a + 0 ) , f ( b ) = f ( b − 0 ) f(x)\in c[a,b] \rArr\begin{cases} (a,b)点点连续\\\\ f(a)=f(a+0),f(b)=f(b-0) \end{cases} f(x)c[a,b](a,b)f(a)=f(a+0),f(b)=f(b0)

性质:
1. f ( x ) ∈ c [ a , b ] , 则 f ( x ) 在 [ a , b ] 上 存 在 m , M . 2. f ( x ) ∈ c [ a , b ] , ∃ k > 0 , ∀ α ∈ [ a , b ] , f ( α ) ≤ k . 3. f ( x ) ∈ c [ a , b ] , 且 f ( a ) f ( b ) < 0 , ∃ ξ ∈ ( a , b ) , f ( ξ ) = 0. ( 零 点 定 理 ) 4. f ( x ) ∈ c [ a , b ] , ∀ η ∈ [ a , b ] , 则 ∃ ξ ∈ [ a , b ] , f ( ξ ) = η ( 介 值 定 理 ) f(x)\in c[a,b],则f(x)在[a,b]上存在m,M.\\ 2.f(x)\in c[a,b],\exist k>0,\forall \alpha\in[a,b],f(\alpha)\le k.\\ 3.f(x)\in c[a,b],且f(a)f(b)<0,\exist\xi\in(a,b),f(\xi)=0.(零点定理)\\ 4.f(x)\in c[a,b],\forall\eta\in[a,b],则\exist\xi\in[a,b],f(\xi)=\eta(介值定理) f(x)c[a,b],f(x)[a,b]m,M.2.f(x)c[a,b],k>0,α[a,b],f(α)k.3.f(x)c[a,b],f(a)f(b)<0,ξ(a,b),f(ξ)=0.4.f(x)c[a,b],η[a,b],ξ[a,b],f(ξ)=η()

注:
① f ( x ) ∈ c [ a , b ] , 有 命 题 , ∃ ξ ∈ ( a , b ) … 零 点 定 理 ② f ( x ) ∈ c [ a , b ] , 有 命 题 , ∃ ξ ∈ [ a , b ] … 介 值 定 理 ①f(x)\in c[a,b],有命题,\exist\xi\in(a,b)\dots零点定理\\ ②f(x)\in c[a,b],有命题,\exist\xi\in[a,b]\dots介值定理 f(x)c[a,b]ξ(a,b)f(x)c[a,b],,ξ[a,b]

例:

f ( x ) ∈ c [ 0 , 1 ] , f ( 1 2 ) = 1 , f ( 1 ) = 1 2 , 证 : ∃ ξ ∈ ( 0 , 1 ) , 使 f ( ξ ) = ξ f(x)\in c[0,1],f(\cfrac{1}{2})=1,f(1)=\cfrac{1}{2},证:\exist\xi\in(0,1),使f(\xi)=\xi f(x)c[0,1],f(21)=1,f(1)=21:ξ(0,1),使f(ξ)=ξ

证: 令 : T ( x ) = f ( x ) − x T ( 1 2 ) = f ( 1 2 ) − 1 2 = 1 2 T ( 1 ) = f ( 1 ) − 1 = − 1 2 T ( x ) 在 [ 0 , 1 ] 连 续 ∵ T ( 1 2 ) T ( 1 ) < 0 ∴ ∃ ξ ∈ ( 1 2 , 1 ) ⊂ ( 0 , 1 ) , 使 T ( ξ ) = 0 , 即 f ( ξ ) = ξ . 令:T(x)=f(x)-x\\ T(\cfrac{1}{2})=f(\cfrac{1}{2})-\cfrac{1}{2}=\cfrac{1}{2}\\ T(1)=f(1)-1=-\cfrac{1}{2}\\ T(x)在[0,1]连续\\ \because T(\cfrac{1}{2})T(1)<0\\ \therefore\exist\xi\in(\cfrac{1}{2},1)\subset(0,1),使T(\xi)=0,即f(\xi)=\xi. :T(x)=f(x)xT(21)=f(21)21=21T(1)=f(1)1=21T(x)[0,1]T(21)T(1)<0ξ(21,1)(0,1),使T(ξ)=0,f(ξ)=ξ.

f ( x ) ∈ c [ 0 , 2 ] , 且 f ( 1 ) + f ( 2 ) + f ( 3 ) = 3 , 证 , ∃ ξ ∈ [ 0 , 2 ] 使 f ( ξ ) = 1. f(x)\in c[0,2],且f(1)+f(2)+f(3)=3,证,\exist\xi\in[0,2]使f(\xi)=1. f(x)c[0,2]f(1)+f(2)+f(3)=3,,ξ[0,2]使f(ξ)=1.

证: f ( x ) ∈ c [ 0 , 2 ] , ∃ m , M , 使 ∀ η ∈ [ 0 , 2 ] , m ≤ f ( η ) ≤ M ∴ 3 m ≤ f ( 1 ) + f ( 2 ) + f ( 3 ) ≤ 3 M ∴ m ≤ 1 ≤ M ∴ ∃ ξ ∈ [ 0 , 2 ] 使 f ( ξ ) = 1 f(x)\in c[0,2],\exist m,M,使\forall\eta\in[0,2],m\le f(\eta)\le M\\ \therefore 3m\le f(1)+f(2)+f(3)\le3M\\ \therefore m\le1\le M\\ \therefore\exist\xi\in[0,2]使f(\xi)=1 f(x)c[0,2],m,M,使η[0,2],mf(η)M3mf(1)+f(2)+f(3)3Mm1Mξ[0,2]使f(ξ)=1

f ( x ) ∈ c [ a , b ] , ∀ p > 0 , q > 0 证 : ∃ ξ ∈ [ a , b ] 使 p f ( a ) + q f ( b ) = ( p + q ) f ( ξ ) f(x)\in c[a,b],\forall p>0,q>0\\证:\exist \xi\in[a,b]使pf(a)+qf(b)=(p+q)f(\xi) f(x)c[a,b],p>0,q>0:ξ[a,b]使pf(a)+qf(b)=(p+q)f(ξ)

证: ∵ f ( x ) ∈ c [ a , b ] ∴ f ( x ) 在 [ a , b ] 存 在 m , M ( p + q ) m ≤ p f ( a ) + q f ( b ) ≤ ( p + q ) M m ≤ p f ( a ) + q f ( b ) q + p ≤ M ∃ ξ ∈ [ a , b ] , 使 f ( ξ ) = p f ( a ) + q f ( b ) q + p 即 p f ( a ) + q f ( b ) = ( p + q ) f ( ξ ) \because f(x)\in c[a,b]\\ \therefore f(x)在[a,b]存在m,M\\ (p+q)m\le pf(a)+qf(b)\le(p+q)M\\ m\le\cfrac{pf(a)+qf(b)}{q+p}\le M\\ \exist\xi\in[a,b],使f(\xi)=\cfrac{pf(a)+qf(b)}{q+p}\\ 即pf(a)+qf(b)=(p+q)f(\xi) f(x)c[a,b]f(x)[a,b]m,M(p+q)mpf(a)+qf(b)(p+q)Mmq+ppf(a)+qf(b)Mξ[a,b],使f(ξ)=q+ppf(a)+qf(b)pf(a)+qf(b)=(p+q)f(ξ)


难点

洛必达法则和等价无穷小混合应用

洛必达法则及应用
洛必达法则参考此链接,混合应用刷题。

洛必达法则失效情况

只 有 当 lim ⁡ x → ∙ f ( x ) F ( x ) = ∞ ∞ 0 0 lim ⁡ x → ∙ f ( x ) F ( x ) = A ∣ ∞ 时 洛 必 达 法 则 可 以 使 用 。 只有当\lim\limits_{x\to\bullet}\cfrac{f(x)}{F(x)}\overset{\tiny\cfrac{0}{0}}{\underset{\tiny\cfrac{\infty}{\infty}}{\huge=}}\lim\limits_{x\to\bullet}\cfrac{f(x)}{F(x)}=A|\infty时洛必达法则可以使用。 xlimF(x)f(x)=00xlimF(x)f(x)=A使
例:
lim ⁡ x → + ∞ ∫ 0 x ∣ sin ⁡ t ∣ d t x = \lim\limits_{x\to+\infty}\cfrac{\int^x_0|\sin t|dt}{x}= x+limx0xsintdt=

夹逼定理的应用

夹逼定理主要采用缩小扩大的方法,使两端取极限后大小相等。缩小扩大后尽量计算极限,若不相等,保留结果,寻找其他缩小扩大方法。
例: lim ⁡ n → ∞ ( 2 n + 3 n + 4 n ) 1 n \lim\limits_{n\to\infty}(2^n+3^n+4^n)^{\tiny\cfrac{1}{n}} nlim(2n+3n+4n)n1
在对上面公式扩大缩小易得到: lim ⁡ n → ∞ 3 1 n 2 = 2    lim ⁡ n → ∞ 3 1 n 4 = 4 \lim\limits_{n\to\infty}3^{\tiny\cfrac{1}{n}}2=2\ \ \lim\limits_{n\to\infty}3^{\tiny\cfrac{1}{n}}4=4 nlim3n12=2  nlim3n14=4虽然没得到相等结果,但是缩小时括号内只取 4 n 4^n 4n得: lim ⁡ n → ∞ 4 = 4 \lim\limits_{n\to\infty}4=4 nlim4=4,得到结果。

数列极限

一般除了采用夹逼定理,还采用极限存在定理解决此类问题。

两个重要极限

lim ⁡ x → 0 s i n x x = 1 \lim\limits_{x\to0}\cfrac{sinx}{x}=1 x0limxsinx=1
一般用来解决三角函数的问题。
lim ⁡ x → ∞ ( 1 + 1 x ) x = e \lim\limits_{x\to\infty}(1+\cfrac{1}{x})^x=e xlim(1+x1)x=e
一般处理 1 ∞ 1^{\infty} 1型的极限,是除了将 1 ∞ → ln ⁡ 1 1 ∞ 1^{\infty}\to\cfrac{\ln1}{\tiny\cfrac{1}{\infty}} 11ln1的另一种解决方法。

间断点问题

这类问题主要围绕 arctan ⁡ f ( x ) , 1 f ( x ) , e f ( x ) \arctan f(x),\cfrac{1}{f(x)},e^{f(x)} arctanf(x)f(x)1ef(x)展开。

  • 1 x \cfrac{1}{x} x1 x → 0 + x\to0^{+} x0+ x → 0 − x\to0^{-} x0时有完全相反的极限,即 + ∞ 和 − ∞ +\infty和-\infty +,因此经常与其他函数混合考察;同理 sec ⁡ x 和 csc ⁡ x \sec x和\csc x secxcscx也值得注意。
  • arctan ⁡ x \arctan x arctanx x → + ∞ x\to+\infty x+ x → − ∞ x\to-\infty x时,极限分别为 π 2 和 − π 2 \cfrac{\pi}{2}和-\cfrac{\pi}{2} 2π2π,经常与 1 f ( x ) \cfrac{1}{f(x)} f(x)1混合考察跳跃间断点。
  • 1 f ( x ) , e f ( x ) \cfrac{1}{f(x)},e^{f(x)} f(x)1ef(x)混合考察第二类间断点。
    考察主要的点:
  • 分段函数分段函数分段点
  • 函数无定义点

*泰勒公式在极限中的应用

如何理解泰勒公式
知乎上关于泰勒公式的解释已经相当通俗易懂,这里就不再过多赘述。
常用麦克劳林公式( x 0 = 0 x_0=0 x0=0时的泰勒公式).
在这里插入图片描述
由下面例题可知,麦克劳林公式的阶数由实际情况确定。
例: lim ⁡ x → 0 ( 1 + x 1 + arctan ⁡ x ) 1 x 2 arcsin ⁡ x \lim\limits_{x\to0}\bigg(\cfrac{1+x}{1+\arctan x}\bigg)^{\tiny\cfrac{1}{x^2\arcsin x}} x0lim(1+arctanx1+x)x2arcsinx1
= e lim ⁡ x → 0 1 x 2 arcsin ⁡ x ln ⁡ [ ( 1 + x 1 + arctan ⁡ x − 1 ) + 1 ] = e lim ⁡ x → 0 1 x 2 arcsin ⁡ x ∗ x − arctan ⁡ x 1 + arctan ⁡ x = e lim ⁡ x → 0 1 x 2 ∗ ( x + o ( x 1 ) ) ∗ x − ( x − 1 3 x 3 + o ( x 3 ) ) 1 + ( x + o ( x 1 ) ) = e lim ⁡ x → 0 1 3 x 3 x 4 + x 3 = e 1 3 =e^{\lim\limits_{x\to0}\cfrac{1}{x^2\arcsin x}\ln\big[(\cfrac{1+x}{1+\arctan x}-1)+1\big]}\\ =e^{\lim\limits_{x\to 0}\cfrac{1}{x^2\arcsin x}*\cfrac{x-\arctan x}{1+\arctan x}}\\ =e^{\lim\limits_{x\to 0}\cfrac{1}{x^2*(x+o(x^1))}*\cfrac{x-(x-\tiny\cfrac{1}{3}x^3+o(x^3))}{1+(x+o(x^1))}}\\ =e^{\lim\limits_{x\to 0}}\cfrac{\cfrac{1}{3}x^3}{x^4+x^3}\\ =e^{\tiny\cfrac{1}{3}} =ex0limx2arcsinx1ln[(1+arctanx1+x1)+1]=ex0limx2arcsinx11+arctanxxarctanx=ex0limx2(x+o(x1))11+(x+o(x1))x(x31x3+o(x3))=ex0limx4+x331x3=e31

*微分中值定理在极限中的应用

求 lim ⁡ n → ∞ n 2 ( arctan ⁡ π n − arctan ⁡ π n + 1 ) f ( x ) = arctan ⁡ x , 由 拉 格 朗 日 中 值 定 理 得 : f ( π n ) − f ( π n + 1 ) = f ′ ( ζ ) ( π n − π n + 1 ) = 1 1 + ζ 2 ∗ π n 2 + n ∴ 原 式 = lim ⁡ n → ∞ 1 ζ 2 + 1 ∗ π n 2 n 2 + n … ζ ∈ ( π n + 1 , π n ) = π 求\lim\limits_{n\to\infty}n^2\bigg(\arctan \cfrac{\pi}{n}-\arctan \cfrac{\pi}{n+1}\bigg)\\ f(x)=\arctan x,由拉格朗日中值定理得:\\ f(\cfrac{\pi}{n})-f(\cfrac{\pi}{n+1})=f^{'}(\zeta)(\cfrac{\pi}{n}-\cfrac{\pi}{n+1})\\ =\cfrac{1}{1+\zeta^{2}}*\cfrac{\pi}{n^2+n}\\ \begin{aligned} \therefore原式&=&\lim\limits_{n\to\infty}\cfrac{1}{\zeta^2+1}*\cfrac{\pi n^2}{n^2+n}\dots\zeta\in(\cfrac{\pi}{n+1},\cfrac{\pi}{n})&\\ &=\pi& \end{aligned} nlimn2(arctannπarctann+1π)f(x)=arctanx,:f(nπ)f(n+1π)=f(ζ)(nπn+1π)=1+ζ21n2+nπ==πnlimζ2+11n2+nπn2ζ(n+1π,nπ)

*海涅定理(归结原则)的使用

lim ⁡ x → x 0 f ( x ) = A 存 在 ⇔ 存 在 以 x 0 为 极 限 的 数 列 { x n } , 使 lim ⁡ n → ∞ f ( x n ) = A 存 在 . \lim\limits_{x\to x_0}f(x)=A存在\Harr存在以x_0为极限的数列\{x_n\},使\lim\limits_{n\to\infty}f(x_n)=A存在. xx0limf(x)=Ax0{xn}使nlimf(xn)=A.
例: lim ⁡ n → ∞ ( n tan ⁡ 1 n ) n 2 = \lim\limits_{n\to\infty}(n\tan \cfrac{1}{n})^{n^2}= nlim(ntann1)n2=
取 x n = 1 n , n → ∞ , 则 f ( x ) = lim ⁡ x → 0 ( 1 x tan ⁡ x ) x − 2 = e lim ⁡ x → 0 ln ⁡ ( 1 x tan ⁡ x ) x 2 = e lim ⁡ x → 0 tan ⁡ x − x x 3 = e 1 3 ∴ 由 归 结 原 则 得 lim ⁡ n → ∞ ( n tan ⁡ 1 n ) n 2 = e 1 3 取x_n=\cfrac{1}{n},n\to\infty,则f(x)=\lim\limits_{x\to0}(\cfrac{1}{x}\tan x)^{x^{-2}}=e^{\lim\limits_{x\to0}\tiny\cfrac{\ln(\cfrac{1}{x}\tan x)}{x^2}}\\ =e^{\lim\limits_{x\to0}\tiny\cfrac{\tan x-x}{x^3}}\\ =e^{\tiny\cfrac{1}{3}}\\ \therefore由归结原则得\lim\limits_{n\to\infty}(n\tan \cfrac{1}{n})^{n^2}=e^{\tiny\cfrac{1}{3}} xn=n1nf(x)=x0lim(x1tanx)x2=ex0limx2ln(x1tanx)=ex0limx3tanxx=e31nlim(ntann1)n2=e31

*使用定积分定义

∫ 0 1 f ( t ) d t = lim ⁡ n → ∞ ∑ i = 1 n f ( i n ) 1 n \displaystyle\int_0^1f(t)dt=\lim\limits_{n\to\infty}\sum^{n}_{i=1}f\big(\cfrac{i}{n}\big)\cfrac{1}{n} 01f(t)dt=nlimi=1nf(ni)n1

入门练习

  1. lim ⁡ x → 0 2 x + sin ⁡ 2 x − 1 x = \lim\limits_{x\to0}\cfrac{2^x+\sin 2x-1}{x}= x0limx2x+sin2x1=
  2. lim ⁡ x → 0 e x − e arcsin ⁡ x x 3 = \lim\limits_{x\to0}\cfrac{e^x-e^{\arcsin x}}{x^3}= x0limx3exearcsinx=
  3. lim ⁡ x → 0 ln ⁡ sin ⁡ x x 2 x 2 = \lim\limits_{x\to0}\cfrac{\small\ln{\cfrac{\sin x}{x^2}}}{x^2}= x0limx2lnx2sinx=
  4. lim ⁡ x → 0 ( e 2 x + 1 2 ) − 1 1 − cos ⁡ x = \lim\limits_{x\to0}\cfrac{\small(\cfrac{e^{2x}+1}{2})-1}{1-\cos x}= x0lim1cosx(2e2x+1)1=
  5. 设 设 | a | < 1 , 则 lim ⁡ n → ∞ ( 1 + a ) ( 1 + a 2 ) … ( 1 + a 2 n ) = ,则\lim\limits_{n\to\infty}(1+a)(1+a^2)\dots(1+a^{2^n})= nlim(1+a)(1+a2)(1+a2n)=
  6. lim ⁡ x → ∞ ( sin ⁡ 2 2 x + cos ⁡ 1 x ) x 2 = \lim\limits_{x\to\infty}\bigg(\sin^2\cfrac{2}{x}+\cos \cfrac{1}{x}\bigg)^{x^2}= xlim(sin2x2+cosx1)x2=
  7. lim ⁡ x → 0 [ x ln ⁡ ( 1 + x ) ] 1 x = \lim\limits_{x\to0}\bigg[\cfrac{x}{\ln(1+x)}\bigg]^{\tiny\cfrac{1}{x}}= x0lim[ln(1+x)x]x1=
  8. lim ⁡ x → + ∞ [ ( x + 1 ) arctan ⁡ x − π 2 x ] = \lim\limits_{x\to+\infty}\bigg[(x+1)\arctan x-\cfrac{\pi}{2}x\bigg]= x+lim[(x+1)arctanx2πx]=
  9. lim ⁡ x → − ∞ ( x 2 − 2 x + 4 + x ) = \lim\limits_{x\to-\infty}(\sqrt{x^2-2x+4}+x)= xlim(x22x+4 +x)=
  10. lim ⁡ x → ∞ x 10 ( x + 1 ) n − x n = b ( ≠ 0 , ∞ ) , 则 n = _ _ _ _ _ , b = _ _ _ _ _ \lim\limits_{x\to\infty}\cfrac{x^{10}}{(x+1)^n-x^n}=b(\neq0,\infty),则n=\_\_\_\_\_,b=\_\_\_\_\_ xlim(x+1)nxnx10=b(=0,)n=_____,b=_____
  11. lim ⁡ x → 0 + x sin ⁡ x = \lim\limits_{x\to0^+}x^{\sin x}= x0+limxsinx=
  12. lim ⁡ x → + ∞ ( x 2 + 2 x − x 3 − 3 x 2 3 ) = \lim\limits_{x\to+\infty}(\sqrt{x^2+2x}-\sqrt[3]{x^3-3x^2} )= x+lim(x2+2x 3x33x2 )=
  13. lim ⁡ x → + ∞ ln ⁡ ( x 3 + 2 x + 1 ) ln ⁡ x + 3 = \lim\limits_{x\to+\infty}\cfrac{\ln(x^3+2x+1)}{\ln x+3}= x+limlnx+3ln(x3+2x+1)=
  14. lim ⁡ n → ∞ n ( 1 n 2 + 1 + 1 n 2 + 2 + ⋯ + 1 n 2 + n ) = \lim\limits_{n\to\infty}n\bigg(\cfrac{1}{n^2+1}+\cfrac{1}{n^2+2}+\dots+\cfrac{1}{n^2+n}\bigg)= nlimn(n2+11+n2+21++n2+n1)=
  15. 设 f ( x ) = { a , x = 1 , ( x − 1 ) ln ⁡ x sin ⁡ 2 π x , x ≠ 1 , 且 f ( x ) 在 x = 1 处 连 续 , 则 a = _ _ _ . 设f(x)= \begin{cases} a,&x=1,\\ \cfrac{(x-1)\ln x}{\sin^2\pi x},&x\neq1,\\ \end{cases} 且f(x)在x=1处连续,则a=\_\_\_. f(x)=a,sin2πx(x1)lnx,x=1,x=1,f(x)x=1a=___.

答案

  1. ln ⁡ 2 + 2 \ln 2+2 ln2+2
  2. − 1 6 -\cfrac{1}{6} 61
  3. − 1 6 -\cfrac{1}{6} 61
  4. 2
  5. 1 1 − a \cfrac{1}{1-a} 1a1
  6. e 7 2 e^{\tiny\cfrac{7}{2}} e27
  7. e 1 2 e^{\tiny\cfrac{1}{2}} e21
  8. π 2 − 1 \cfrac{\pi}{2}-1 2π1
  9. 2 2 2
  10. 11       1 11 11\ \ \ \ \ \cfrac{1}{11} 11     111
  11. 1
  12. 2
  13. 3
  14. 1
  15. 1 π 2 \cfrac{1}{\pi^2} π21

视频

关注微信公众号“翼点通”,回复“数二”领取。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值