函数与极限
⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ \star\star\star\star\star\star\star\star\star ⋆⋆⋆⋆⋆⋆⋆⋆⋆基础 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ \star\star\star\star\star\star\star\star\star ⋆⋆⋆⋆⋆⋆⋆⋆⋆
a
n
+
1
=
(
a
n
−
1
)
2
,
a
1
=
0
a_{n+1}=(a_n-1)^2,a_1=0
an+1=(an−1)2,a1=0
视频1-21
高等数学教案
洛必达法则及应用
数学函数绘图工具
邻域
U
(
a
,
s
)
=
{
x
∣
∣
x
−
a
∣
<
s
}
U(a,s) = \{x||x-a|<s\}
U(a,s)={x∣∣x−a∣<s}
去心邻域:
U
(
a
,
s
)
=
{
x
∣
0
<
∣
x
−
a
∣
<
s
}
U(a,s) = \{x|0<|x-a|<s\}
U(a,s)={x∣0<∣x−a∣<s}
基础公式
(
a
+
b
)
3
=
a
3
+
b
3
+
3
a
b
2
+
3
a
2
b
(a+b)^3 =a^3+b^3+3ab^2+3a^2b
(a+b)3=a3+b3+3ab2+3a2b
a
3
+
b
3
=
(
a
+
b
)
(
a
2
−
a
b
+
b
2
)
a^3+b^3=(a+b)(a^2-ab+b^2)
a3+b3=(a+b)(a2−ab+b2)
a
3
−
b
3
=
(
a
−
b
)
(
a
2
+
a
b
+
b
2
)
a^3-b^3=(a-b)(a^2+ab+b^2)
a3−b3=(a−b)(a2+ab+b2)
a
4
+
1
=
(
a
2
+
1
+
2
a
)
(
a
2
+
1
−
2
a
)
a^4+1=(a^2+1+\sqrt{2}a)(a^2+1-\sqrt{2}a)
a4+1=(a2+1+2a)(a2+1−2a)
换底公式:
log
a
b
=
log
c
b
log
c
a
\log_ab=\cfrac{\log_cb}{\log_ca}
logab=logcalogcb
x
β
≪
e
a
x
(
x
→
+
∞
)
x^{\beta}\ll e^{ax}(x\to+\infty)
xβ≪eax(x→+∞)
lim
x
→
0
+
x
ln
x
=
0
\lim\limits_{x\to0^+}x\ln x=0
x→0+limxlnx=0
数列前n项和
等比:
S
n
=
n
a
1
,
q
=
1
S
n
=
a
1
(
1
−
q
n
)
1
−
q
,
q
≠
1
S_n=na_1,q=1\\ S_n=\cfrac{a_1(1-q^n)}{1-q},q\neq1
Sn=na1,q=1Sn=1−qa1(1−qn),q=1
等差:
S
n
=
n
(
a
1
+
a
n
)
2
=
n
a
1
+
n
(
n
−
1
)
d
2
S_n=\cfrac{n(a_1+a_n)}{2}=na_1+\cfrac{n(n-1)d}{2}
Sn=2n(a1+an)=na1+2n(n−1)d
裂项相消法
基本不等式
- 三角不等式: ∣ ∣ a ∣ − ∣ b ∣ ∣ ≤ ∣ a ± b ∣ ≤ ∣ a ∣ + ∣ b ∣ \begin{vmatrix} |a|-|b| \end{vmatrix}\leq|a\pm b|\leq|a|+|b| ∣∣∣a∣−∣b∣∣∣≤∣a±b∣≤∣a∣+∣b∣
- a b ≤ a + b 2 \sqrt{ab}\le\cfrac{a+b}{2} ab≤2a+b重要
- 2 a b ≤ a 2 + b 2 2ab\le a^2+b^2 2ab≤a2+b2
- sin x ≤ x \sin x\le x sinx≤x
- e x ≥ x + 1 e^x\ge x+1 ex≥x+1
- x − 1 ≥ ln x , 注 意 此 时 lim x → 1 ln x x − 1 = 1 x-1\ge \ln x,注意此时\lim\limits_{x\to1}\cfrac{\ln x}{x-1}=1 x−1≥lnx,注意此时x→1limx−1lnx=1
- x − 1 < [ x ] ≤ x x-1\lt[x]\le x x−1<[x]≤x
- x + x 2 + A > 0 x+\sqrt{x^2+A}>0 x+x2+A>0
基本初等函数
基
本
初
等
函
数
{
x
a
a
x
log
a
x
sin
x
,
cos
x
,
tan
x
,
cot
x
,
sec
x
,
csc
x
arcsin
x
,
arccos
x
,
arctan
x
,
a
r
c
c
o
t
x
基本初等函数\\ \begin{cases} x^a\\ a^x\\ \log_ax\\ \sin x,\cos x,\tan x,\cot x,\sec x,\csc x\\ \arcsin x,\arccos x,\arctan x,arccot x \end{cases}
基本初等函数⎩⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎧xaaxlogaxsinx,cosx,tanx,cotx,secx,cscxarcsinx,arccosx,arctanx,arccotx
{
1
sin
x
=
csc
x
1
cos
x
=
sec
x
\begin{cases} \cfrac{1}{\sin x}=\csc x\\ \cfrac{1}{\cos x}=\sec x \end{cases}
⎩⎪⎨⎪⎧sinx1=cscxcosx1=secx
{
1
+
tan
2
x
=
sec
2
x
1
+
cot
2
x
=
csc
2
x
\begin{cases} 1+\tan^2x=\sec^2x\\ 1+\cot^2x=\csc^2x \end{cases}
{1+tan2x=sec2x1+cot2x=csc2x
基础三角函数
各种三角函数图像
基础三角函数
sin
2
x
=
2
sin
x
cos
x
cos
2
x
=
cos
2
x
−
sin
2
x
=
2
cos
x
−
1
=
1
−
2
sin
x
sin
2
x
=
1
−
cos
2
x
2
cos
2
x
=
1
+
cos
2
x
2
tan
2
x
=
1
−
cos
2
x
1
+
cos
2
x
arcsin
x
+
arccos
x
=
π
2
(
−
1
≤
x
≤
1
)
arctan
x
+
a
r
c
c
o
t
x
=
π
2
(
−
∞
≤
x
≤
+
∞
)
sec
2
x
=
1
+
tan
2
x
\sin 2x=2\sin x\cos x\\ \cos 2x=\cos ^2x-\sin^2x=2\cos x-1=1-2\sin x\\ \sin^2x=\cfrac{1-\cos2x}{2}\\ \cos^2x=\cfrac{1+\cos2x}{2}\\ \tan^2x=\cfrac{1-\cos2x}{1+\cos2x}\\ \arcsin x+\arccos x=\cfrac{\pi}{2}(-1\le x\le1)\\ \arctan x+arccot x=\cfrac{\pi}{2}(-\infty\le x\le+\infty)\\ \sec^2 x=1+\tan^2x
sin2x=2sinxcosxcos2x=cos2x−sin2x=2cosx−1=1−2sinxsin2x=21−cos2xcos2x=21+cos2xtan2x=1+cos2x1−cos2xarcsinx+arccosx=2π(−1≤x≤1)arctanx+arccotx=2π(−∞≤x≤+∞)sec2x=1+tan2x
基础导数
ln
(
x
+
x
2
+
a
)
′
=
1
x
2
+
a
\ln(x+\sqrt{x^2+a})^{'}=\cfrac{1}{\sqrt{x^2+a}}
ln(x+x2+a)′=x2+a1
函数性质的重要结论
- f ( x ) 在 [ − l , l ] 上 有 定 义 , 则 F 1 ( x ) = f ( x ) − f ( − x ) 为 奇 函 数 , F 2 ( x ) = f ( x ) + f ( − x ) 为 偶 函 数 。 f(x)在[-l,l]上有定义,则F_1(x)=f(x)-f(-x)为奇函数,F_2(x)=f(x)+f(-x)为偶函数。 f(x)在[−l,l]上有定义,则F1(x)=f(x)−f(−x)为奇函数,F2(x)=f(x)+f(−x)为偶函数。
- f ( x ) 为 可 导 偶 函 数 , f ′ ( x ) 是 奇 函 数 。 f(x)为可导偶函数,f^{'}(x)是奇函数。 f(x)为可导偶函数,f′(x)是奇函数。
- f ( x ) 为 可 导 奇 函 数 , f ′ ( x ) 是 偶 函 数 。 f(x)为可导奇函数,f^{'}(x)是偶函数。 f(x)为可导奇函数,f′(x)是偶函数。
- f ( x ) 为 周 期 为 T 的 周 期 函 数 , f ′ ( x ) 是 周 期 为 T 的 周 期 函 数 。 f(x)为周期为T的周期函数,f^{'}(x)是周期为T的周期函数。 f(x)为周期为T的周期函数,f′(x)是周期为T的周期函数。
- f ( x ) 在 有 限 区 间 ( a , b ) 内 可 导 且 f ′ ( x ) 有 界 , 则 f ( x ) 在 ( a , b ) 内 有 界 。 f(x)在有限区间(a,b)内可导且f^{'}(x)有界,则f(x)在(a,b)内有界。 f(x)在有限区间(a,b)内可导且f′(x)有界,则f(x)在(a,b)内有界。
- 对 u , u 3 的 最 值 , 可 研 究 u ; 同 理 ∣ u ∣ 形 式 研 究 u 2 即 可 。 对\sqrt{u},\sqrt[3]{u}的最值,可研究u;同理|u|形式研究\sqrt{u^2}即可。 对u,3u的最值,可研究u;同理∣u∣形式研究u2即可。
x a 型 函 数 图 像 x^a型函数图像 xa型函数图像
x a { a = 0 ; 1 a > 0 { a 为 整 数 { a = 2 n 图 像 单 调 区 间 与 x 2 相 同 a = 2 n + 1 图 像 单 调 区 间 与 x 3 相 同 a 为 小 数 图 像 单 调 区 间 x 相 同 a < 0 { a 为 整 数 { a = 2 n 图 像 单 调 区 间 与 1 x 2 相 同 a = 2 n + 1 图 像 单 调 区 间 与 1 x 相 同 a 为 小 数 图 像 单 调 区 间 1 x 相 同 x^a\begin{cases} a=0;&1\\ a>0&\begin{cases} a为整数& \begin{cases} a=2n&图像单调区间与x^2相同\\ a=2n+1&图像单调区间与x^3相同 \end{cases}\\ a为小数&图像单调区间\sqrt{x}相同 \end{cases}\\\\ a<0&\begin{cases} a为整数& \begin{cases} a=2n&图像单调区间与\cfrac{1}{x^2}相同\\ a=2n+1&图像单调区间与\cfrac{1}{x}相同 \end{cases}\\ a为小数&图像单调区间\cfrac{1}{\sqrt{x}}相同 \end{cases} \end{cases} xa⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧a=0;a>0a<01⎩⎪⎨⎪⎧a为整数a为小数{a=2na=2n+1图像单调区间与x2相同图像单调区间与x3相同图像单调区间x相同⎩⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎧a为整数a为小数⎩⎪⎨⎪⎧a=2na=2n+1图像单调区间与x21相同图像单调区间与x1相同图像单调区间x1相同
函数与极限
奇偶性
f
(
x
)
=
f
(
−
x
)
f(x)=f(-x)
f(x)=f(−x) 偶函数
f
(
x
)
=
−
f
(
−
x
)
f(x)=-f(-x)
f(x)=−f(−x) 奇函数
反函数
y
=
f
(
x
)
=
>
x
=
f
(
y
)
y = f(x) => x=f(y)
y=f(x)=>x=f(y)
例题:
f
(
x
)
=
l
n
(
x
+
x
2
+
1
)
f(x)=ln(x+\sqrt{x^2+1})
f(x)=ln(x+x2+1)
求奇偶性,反函数:
①:奇偶性:
x
∈
(
−
∞
,
+
∞
)
x\in(-\infty,+\infty)
x∈(−∞,+∞)
f
(
−
x
)
=
l
n
(
−
x
+
x
2
+
1
=
l
n
(
1
x
+
x
2
+
1
)
f(-x)=ln(-x+\sqrt{x^2+1} = ln(\cfrac{1}{x+\sqrt{x^2+1}})
f(−x)=ln(−x+x2+1=ln(x+x2+11)
=
−
l
n
(
x
+
x
2
+
1
)
=
−
f
(
x
)
=-ln(x+\sqrt{x^2+1})\\=-f(x)
=−ln(x+x2+1)=−f(x)
②:反函数
{
x
+
x
2
+
1
=
e
y
…
①
−
x
+
x
2
+
1
=
e
−
y
…
②
\begin{cases} x+\sqrt{x^2+1}=e^y\dotso① \\ -x+\sqrt{x^2+1}=e^-y\dots② \end{cases}
{x+x2+1=ey…①−x+x2+1=e−y…②
由①②得:
x
=
e
y
−
e
−
y
2
x=\cfrac{e^y-e^-y}{2}
x=2ey−e−y
有界性
增减性
符号函数
s
g
n
(
x
)
=
{
1
,
x
>
0
0
,
x
=
0
−
1
,
x
<
0
sgn(x)= \begin{cases} 1, x>0\\ 0, x=0\\ -1,x<0 \end{cases}
sgn(x)=⎩⎪⎨⎪⎧1,x>00,x=0−1,x<0
∣ x ∣ = s g n ( x ) ∗ x |x|=sgn(x)*x ∣x∣=sgn(x)∗x
数列极限
{
a
n
}
数
列
a
−
c
o
n
s
t
a
n
t
∀
ξ
>
0
,
∃
N
>
0
,
当n>N时
\{a_n\} 数列 a-constant\\\forall \xi>0 ,\exist N>0,\text{当n>N时}
{an}数列a−constant∀ξ>0,∃N>0,当n>N时
∣
a
n
−
a
∣
<
ξ
|a_n-a|<\xi
∣an−a∣<ξ
记作:
$
lim
n
→
∞
a
n
=
ξ
或
a
n
→
ξ
,
n
→
∞
\lim\limits _{n\rightarrow\infty}a_n=\xi\text{或}a_n\rightarrow\xi,n\rightarrow\infty
n→∞liman=ξ或an→ξ,n→∞
例:
lim
n
→
∞
2
n
2
−
1
2
n
2
+
1
=
1
\lim\limits_{n\rightarrow\infty}\cfrac{2n^2-1}{2n^2+1}=1
n→∞lim2n2+12n2−1=1
∀
ξ
>
0
\forall\xi>0
∀ξ>0
∣
2
n
2
−
1
2
n
2
+
1
−
1
∣
=
2
2
n
2
+
1
<
1
n
2
<
ξ
\begin{vmatrix} \cfrac{2n^2-1}{2n^2+1}-1 \end{vmatrix}=\cfrac{2}{2n^2+1}<\cfrac{1}{n^2}<\xi
∣∣∣∣2n2+12n2−1−1∣∣∣∣=2n2+12<n21<ξ
n
>
1
ξ
n>\sqrt{\cfrac{1}{\xi}}
n>ξ1
∃
N
=
[
1
ξ
]
,
当
n
>
N
时
\exist N=[\sqrt{\cfrac{1}{\xi}}],当n>N时
∃N=[ξ1],当n>N时
lim
n
→
∞
2
n
2
−
1
2
n
2
+
1
=
1
\lim\limits_{n\rightarrow\infty}\cfrac{2n^2-1}{2n^2+1}=1
n→∞lim2n2+12n2−1=1
性质
三角不等式:
∣
∣
a
∣
−
∣
b
∣
∣
≤
∣
a
±
b
∣
≤
∣
a
∣
+
∣
b
∣
\begin{vmatrix} |a|-|b| \end{vmatrix}\leq|a\pm b|\leq|a|+|b|
∣∣∣a∣−∣b∣∣∣≤∣a±b∣≤∣a∣+∣b∣
1、唯一性:
lim
n
→
∞
a
n
=
A
,
lim
n
→
∞
a
n
=
B
,
则
A
=
B
\lim\limits_{n\rightarrow\infty}a_n=A,\lim\limits_{n\rightarrow\infty}a_n=B,则A=B
n→∞liman=A,n→∞liman=B,则A=B
2、有界性
∣
∣
a
n
∣
−
∣
A
∣
∣
<
ξ
↔
∣
a
n
∣
<
ξ
+
∣
A
∣
\begin{vmatrix} |a_n|-|A| \end{vmatrix}\lt\xi\leftrightarrow|a_n|<\xi+|A|
∣∣∣an∣−∣A∣∣∣<ξ↔∣an∣<ξ+∣A∣
3、保号性
a
n
=
(
−
1
n
+
1
)
n
a_n=(-\cfrac{1}{n+1})^n
an=(−n+11)n
数列与子数列
定理:若数列
{
a
n
}
\{a_n\}
{an}收敛且极限为A,则任取子数列也收敛且极限为A.
推论:
- 若数列 { a n } \{a_n\} {an}存在子数列发散,则数列 { a n } \{a_n\} {an}也发散。
- 若数列 { a n } \{a_n\} {an}存在任意个子数列收敛,但是极限不同,则 { a n } \{a_n\} {an}发散。
二阶递推问题
f ( a n + 2 , a n + 1 , a n ) f(a_{n+2},a_{n+1},a_n) f(an+2,an+1,an)类型的数列通项公式,一般可以采用化为一阶递推的形式: f ( a n + 2 , a n + 1 ) = β f ( a n + 1 , a n ) f(a_{n+2},a_{n+1})=\beta f(a_{n+1},a_n) f(an+2,an+1)=βf(an+1,an)的类型解决问题。
递归式极限的几何意义
在
a
n
+
1
=
f
(
a
n
)
a_{n+1}=f(a_n)
an+1=f(an)的数列递归表达式中,取值线等价于
y
=
f
(
x
)
y=f(x)
y=f(x),y值线等价于
y
=
x
y=x
y=x,
y
=
x
y=x
y=x相当于具有传递参数的功能函数(即将上一步的结果赋值给下一步赋值)。
在图像中,两条线相交处,即上一步结果无限逼近下一步赋值时(
∣
a
n
−
a
a
+
1
∣
→
0
|a_n-a_{a+1}|\to0
∣an−aa+1∣→0),极限存在,且交点就是要求的极值点,若不相交,则不存在极值点。
函数极限
∀
ξ
>
0
,
∃
δ
>
0
,
当
0
<
∣
x
−
a
∣
<
δ
时
\forall\xi>0,\exist\delta>0,当0<|x-a|<\delta时
∀ξ>0,∃δ>0,当0<∣x−a∣<δ时
∣
f
(
x
)
−
A
∣
<
ξ
|f(x)-A|<\xi
∣f(x)−A∣<ξ
a
为
函
数
f
(
x
)
,
x
→
a
时
的
极
限
a为函数f(x),x\rightarrow a时的极限
a为函数f(x),x→a时的极限
例:
证:
lim
x
→
∞
x
3
−
1
x
−
1
=
3
\text{证:}\lim\limits_{x\rightarrow\infty}\cfrac{x^3-1}{x-1}=3
证:x→∞limx−1x3−1=3
∀
ξ
>
0
\forall\xi>0
∀ξ>0
∣
x
3
−
1
x
−
1
−
3
∣
=
∣
x
2
+
x
+
1
−
3
∣
∣
x
+
2
∣
∗
∣
x
−
1
∣
<
4
∣
x
−
1
∣
<
ξ
∴
∣
x
−
1
∣
<
ξ
4
∴
取
δ
=
m
i
n
{
ξ
4
,
1
}
当
0
<
∣
x
−
1
∣
<
δ
时
,
lim
x
→
∞
x
3
−
1
x
−
1
=
3
\begin{vmatrix} \cfrac{x^3-1}{x-1}-3 \end{vmatrix} =\begin{vmatrix} x^2+x+1-3 \end{vmatrix}\\ |x+2|*|x-1|<4|x-1|<\xi\\ \therefore|x-1|<\cfrac{\xi}{4}\\ \therefore取\delta=min\{\cfrac{\xi}{4},1\}\\ 当0<|x-1|<\delta时,\lim\limits_{x\rightarrow\infty}\cfrac{x^3-1}{x-1}=3
∣∣∣∣x−1x3−1−3∣∣∣∣=∣∣x2+x+1−3∣∣∣x+2∣∗∣x−1∣<4∣x−1∣<ξ∴∣x−1∣<4ξ∴取δ=min{4ξ,1}当0<∣x−1∣<δ时,x→∞limx−1x3−1=3
Case1:
x
→
+
∞
∀
ξ
>
0
,
∃
X
>
0
,
当
x
>
X
时
x\to+\infty\\\forall\xi>0,\exist X>0,当x>X时
x→+∞∀ξ>0,∃X>0,当x>X时
∣
f
(
x
)
−
A
∣
<
ξ
|f(x)-A|<\xi
∣f(x)−A∣<ξ
称
A
为
f
(
x
)
,
当
x
→
+
∞
时
的
极
限
。
称A为f(x),当x\to+\infty时的极限。
称A为f(x),当x→+∞时的极限。
例:
证
:
lim
x
→
+
∞
2
x
2
x
2
+
1
=
2
证:\lim\limits_{x\rightarrow+\infty}\cfrac{2x^2}{x^2+1}=2
证:x→+∞limx2+12x2=2
∀
ξ
>
0
\forall\xi>0
∀ξ>0
∣
2
x
2
x
2
+
1
−
2
∣
=
∣
2
x
2
+
1
∣
<
∣
1
x
2
∣
<
ξ
∴
x
>
1
ξ
\begin{vmatrix} \cfrac{2x^2}{x^2+1}-2 \end{vmatrix}= \begin{vmatrix} \cfrac{2}{x^2+1} \end{vmatrix}<\\|\cfrac{1}{x^2}|<\xi\\ \therefore x>\sqrt{\cfrac{1}{\xi}}
∣∣∣∣x2+12x2−2∣∣∣∣=∣∣∣∣x2+12∣∣∣∣<∣x21∣<ξ∴x>ξ1
取
X
=
1
ξ
,
当
x
>
X
时
∣
2
x
2
x
2
+
1
−
2
∣
<
ξ
取X=\sqrt{\cfrac{1}{\xi}},当x>X时 \begin{vmatrix} \cfrac{2x^2}{x^2+1}-2 \end{vmatrix}<\xi
取X=ξ1,当x>X时∣∣∣∣x2+12x2−2∣∣∣∣<ξ
∴
lim
x
→
+
∞
2
x
2
x
2
+
1
=
2
\therefore\lim\limits_{x\rightarrow+\infty}\cfrac{2x^2}{x^2+1}=2
∴x→+∞limx2+12x2=2
性质
1、唯一性
2、局部保号性
lim
x
→
a
f
(
x
)
=
A
>
0
(
<
0
)
\lim\limits_{x\to a}f(x)=A>0(<0)
x→alimf(x)=A>0(<0)
∃
δ
>
0
,
当
0
<
∣
x
−
a
∣
<
δ
时
f
(
x
)
>
0
(
<
0
)
\exist\delta>0,当0<|x-a|<\delta时 \\f(x)>0(<0)
∃δ>0,当0<∣x−a∣<δ时f(x)>0(<0)
3、局部有界性
lim
x
→
+
∞
f
(
x
)
=
M
⇒
∃
X
>
0
,
M
>
0
,
当
x
>
X
时
\lim\limits_{x\rightarrow+\infty}f(x)=M\rArr\exist X>0,M>0,当x>X时
x→+∞limf(x)=M⇒∃X>0,M>0,当x>X时
∣
f
(
x
)
∣
≤
M
|f(x)|\le M
∣f(x)∣≤M
4、无穷小,无穷大
∀
ξ
>
0
,
∃
δ
>
0
,
当
0
<
∣
x
−
a
∣
<
δ
时
\forall \xi>0, \exist \delta>0,当0<|x-a|<\delta时
∀ξ>0,∃δ>0,当0<∣x−a∣<δ时
∣
f
(
x
)
−
0
∣
<
ξ
即
|f(x)-0|<\xi 即
∣f(x)−0∣<ξ即
lim
x
→
a
f
(
x
)
=
0
\lim\limits_{x\to a}f(x)=0
x→alimf(x)=0
称
f
(
x
)
当
x
→
a
时
的
无
穷
小
称f(x)当x\to a时的无穷小
称f(x)当x→a时的无穷小
∀
M
>
0
,
∃
δ
>
0
,
当
0
<
∣
x
−
a
∣
<
δ
时
\forall M>0,\exist \delta>0,当0<|x-a|< \delta 时
∀M>0,∃δ>0,当0<∣x−a∣<δ时
∣
f
(
x
)
∣
≥
M
|f(x)| \geq M
∣f(x)∣≥M
称
f
(
x
)
当
x
→
a
时
的
无
穷
大
称f(x)当x\to a时的无穷大
称f(x)当x→a时的无穷大
运算法则
引理1:
lim
x
→
a
f
(
x
)
=
A
⇒
f
(
x
)
=
A
+
α
\lim\limits_{x\to a}f(x) = A \rArr f(x) = A+\alpha
x→alimf(x)=A⇒f(x)=A+α
引理2:①
α
→
0
,
β
→
0
(
x
→
a
)
⇒
α
±
β
→
0
(
x
→
a
)
\alpha\rightarrow0,\beta\rightarrow0(x\rightarrow a)\rArr\alpha\pm\beta\rightarrow0(x\rightarrow a)
α→0,β→0(x→a)⇒α±β→0(x→a)
②
α
→
0
,
∣
β
∣
≤
M
⇒
α
β
→
0
(
x
→
0
)
\alpha\rightarrow0,|\beta|\le M \rArr\alpha\beta\rightarrow0(x\rightarrow0)
α→0,∣β∣≤M⇒αβ→0(x→0)
如:
lim
x
→
a
x
2
s
i
n
1
x
=
0
\lim\limits_{x\rightarrow a}x^2sin\cfrac{1}{x}=0
x→alimx2sinx1=0
③
α
→
0
(
x
→
a
)
,
β
=
c
o
n
s
t
a
n
t
⇒
α
β
→
0
\alpha\rightarrow 0(x\rightarrow a),\beta=constant\rArr \alpha\beta\rightarrow0
α→0(x→a),β=constant⇒αβ→0
④
α
→
0
,
β
→
0
(
x
→
a
)
⇒
α
β
→
0
(
x
→
a
)
\alpha\rightarrow0,\beta\rightarrow0(x\rightarrow a)\rArr\alpha\beta\rightarrow 0(x\rightarrow a)
α→0,β→0(x→a)⇒αβ→0(x→a)
定理:
lim
f
(
x
)
=
A
,
lim
f
(
x
)
=
B
\lim f(x)=A,\lim f(x) = B
limf(x)=A,limf(x)=B
lim
f
(
x
)
g
(
x
)
=
A
∗
B
\lim f(x)g(x)=A*B
limf(x)g(x)=A∗B
lim
f
(
x
)
±
g
(
x
)
=
A
±
B
\lim f(x)\pm g(x)=A\pm B
limf(x)±g(x)=A±B
lim
f
(
x
)
g
(
x
)
=
A
B
(
B
≠
0
)
\lim \cfrac{f(x)}{g(x)}=\cfrac{A}{B}(B\neq0)
limg(x)f(x)=BA(B=0)
例1:
lim
x
→
1
x
2
+
x
−
2
x
2
−
1
=
lim
x
→
1
(
x
−
1
)
(
x
+
2
)
(
x
−
1
)
(
x
+
1
)
=
lim
x
→
1
x
+
2
x
+
1
=
3
2
\lim\limits_{x\to1}\cfrac{x^2+x-2}{x^2-1}\\ =\lim\limits_{x\to1}\cfrac{(x-1)(x+2)}{(x-1)(x+1)}\\ =\lim\limits_{x\to1}\cfrac{x+2}{x+1}\\ =\cfrac{3}{2}
x→1limx2−1x2+x−2=x→1lim(x−1)(x+1)(x−1)(x+2)=x→1limx+1x+2=23
例2:
lim
x
→
∞
x
2
+
2
x
+
4
2
x
2
+
x
=
lim
x
→
∞
1
+
2
x
+
4
x
2
2
+
1
x
=
1
2
\lim\limits_{x\to\infty}\cfrac{x^2+2x+4}{2x^2+x}\\ =\lim\limits_{x\to\infty}\cfrac{1+\cfrac{2}{x}+\cfrac{4}{x^2}}{2+\cfrac{1}{x}}\\ =\cfrac{1}{2}
x→∞lim2x2+xx2+2x+4=x→∞lim2+x11+x2+x24=21
注:
P
(
x
)
=
a
n
x
n
+
⋯
+
a
1
x
+
a
0
Q
(
x
)
=
b
m
x
m
+
⋯
+
b
1
x
+
b
0
(
a
n
≠
0
,
b
m
≠
0
)
lim
x
→
∞
P
(
x
)
Q
(
x
)
=
{
∞
,
n
>
m
a
n
b
n
,
n
=
m
0
,
n
<
m
P(x)=a_nx^n+\dots+a_1x+a_0\\ Q(x)=b_mx^m+\dots+b_1x+b_0(a_n\neq0,b_m\neq0)\\ \lim\limits_{x\to\infty}\cfrac{P(x)}{Q(x)}= \begin{cases} \infty, n>m\\ \cfrac{a_n}{b_n}, n=m\\ 0,n<m \end{cases}
P(x)=anxn+⋯+a1x+a0Q(x)=bmxm+⋯+b1x+b0(an=0,bm=0)x→∞limQ(x)P(x)=⎩⎪⎪⎪⎨⎪⎪⎪⎧∞,n>mbnan,n=m0,n<m
存在准则
夹逼定理
数列型
{
a
n
<
=
b
n
<
=
c
n
lim
n
→
∞
a
n
=
lim
n
→
∞
c
n
=
A
⇒
lim
n
→
∞
c
n
=
A
\begin{cases} a_n<=b_n<=c_n\\ \lim\limits_{n\to\infty}a_n=\lim\limits_{n\to\infty}c_n=A \end{cases}\rArr\lim\limits_{n\to\infty}c_n=A
{an<=bn<=cnn→∞liman=n→∞limcn=A⇒n→∞limcn=A
函数型
{
f
(
x
)
<
=
g
(
x
)
<
=
t
(
x
)
lim
n
→
∞
f
(
x
)
=
lim
n
→
∞
t
(
x
)
=
A
⇒
lim
n
→
∞
g
(
x
)
=
A
\begin{cases} f(x)<=g(x)<=t(x)\\ \lim\limits_{n\to\infty}f(x)=\lim\limits_{n\to\infty}t(x)=A \end{cases}\rArr\lim\limits_{n\to\infty}g(x)=A
{f(x)<=g(x)<=t(x)n→∞limf(x)=n→∞limt(x)=A⇒n→∞limg(x)=A
单调有界函数必有极限
{
无
上
界
:
lim
x
→
+
∞
a
n
=
+
∞
有
上
界
:
∃
M
,
∀
a
n
≤
M
\begin{cases} 无上界: \lim\limits_{x\to+\infty}a_n=+\infty\\ 有上界:\exist M,\forall a_n\le M \end{cases}
{无上界:x→+∞liman=+∞有上界:∃M,∀an≤M
{
无
下
界
:
lim
x
→
−
∞
a
n
=
−
∞
有
下
界
:
∃
M
,
∀
a
n
≥
M
\begin{cases} 无下界: \lim\limits_{x\to-\infty}a_n=-\infty\\ 有下界:\exist M,\forall a_n\ge M \end{cases}
{无下界:x→−∞liman=−∞有下界:∃M,∀an≥M
例1: a 1 = 2 , a 2 = 2 + 2 , a 3 = 2 + 2 + 2 , … a_1=\sqrt{2},a_2=\sqrt{2+\sqrt{2}},a_3=\sqrt{2+\sqrt{2+\sqrt{2}}},\dots a1=2,a2=2+2,a3=2+2+2,…
证明极限是否存在,并求此数列的极限。
证:
a
1
=
2
,
a
n
+
1
=
2
+
a
n
∴
{
a
n
}
单
调
递
增
现
证
:
a
n
≤
2
a_1=\sqrt{2},a_{n+1}=\sqrt{2+a_n}\\ \therefore \{a_n\}单调递增\\ 现证:a_n\le2
a1=2,an+1=2+an∴{an}单调递增现证:an≤2
a
1
≤
2
设
a
k
≤
2
a
k
+
1
=
2
+
a
k
≤
2
∀
n
,
a
n
≤
2
∴
lim
n
→
∞
a
n
存
在
令
lim
n
→
∞
a
n
=
A
a
n
+
1
=
2
+
a
n
…
…
同
时
取
极
限
A
=
2
+
A
∴
A
2
−
A
−
2
=
0
∴
A
=
−
1
(
舍
去
)
A
=
2
a_1\le2\\ 设a_k\le2\\ a_{k+1}=\sqrt{2+a_k}\le2\\ \forall n,a_n\le2\\ \therefore\lim\limits_{n\to\infty}a_n存在\\ 令\lim\limits_{n\to\infty}a_n=A\\ a_{n+1}=\sqrt{2+a_n}\dots\dots同时取极限\\ A=\sqrt{2+A}\\ \therefore A^2-A-2=0\\ \therefore A=-1(舍去)A=2
a1≤2设ak≤2ak+1=2+ak≤2∀n,an≤2∴n→∞liman存在令n→∞liman=Aan+1=2+an……同时取极限A=2+A∴A2−A−2=0∴A=−1(舍去)A=2
例2: a 1 = 2 , a n + 1 = 1 2 ( a n + 1 a n ) . 证 明 lim n → ∞ a n 存 在 . a_1=2,a_{n+1}=\cfrac{1}{2}\bigg(a_n+\cfrac{1}{a_n}\bigg).证明\lim\limits_{n\to\infty}a_n存在. a1=2,an+1=21(an+an1).证明n→∞liman存在.
证:
a
n
+
1
=
1
2
(
a
n
+
1
a
n
)
≥
1
a_{n+1}=\cfrac{1}{2}\bigg(a_n+\cfrac{1}{a_n}\bigg)\ge1
an+1=21(an+an1)≥1
a
1
≥
1
∴
{
a
n
}
有
下
界
a
n
+
1
−
a
n
=
1
2
(
1
a
n
−
a
n
)
=
1
2
(
1
−
a
n
2
a
n
)
<
0
∴
a
n
数
列
递
减
∴
lim
n
→
∞
a
n
存
在
a_1\ge1\\ \therefore \{a_n\}有下界\\ a_{n+1}-a_n=\cfrac{1}{2}\bigg(\cfrac{1}{a_n}-a_n\bigg)\\ =\cfrac{1}{2}\bigg(\cfrac{1-a_n^2}{a_n}\bigg)\\ \lt0\\ \therefore a_n数列递减\\ \therefore\lim\limits_{n\to\infty}a_n存在
a1≥1∴{an}有下界an+1−an=21(an1−an)=21(an1−an2)<0∴an数列递减∴n→∞liman存在
两个重要极限
lim x → 0 s i n x x = 1 , lim x → ∞ ( 1 + 1 x ) x = e , ( lim x → 0 ( 1 + x ) 1 x = e ) \lim\limits_{x\to0}\cfrac{sinx}{x}=1,\lim\limits_{x\to\infty}(1+\cfrac{1}{x})^x=e ,\bigg(\lim\limits_{x\to0}(1+x)^{\cfrac{1}{x}}=e\bigg) x→0limxsinx=1,x→∞lim(1+x1)x=e,(x→0lim(1+x)x1=e)
例题
例1: lim n → ∞ ( n + 1 ) n + 1 n n s i n 1 n \lim\limits_{n\to\infty}\cfrac{(n+1)^{n+1}}{n^n}sin\cfrac{1}{n} n→∞limnn(n+1)n+1sinn1
证 : lim n → ∞ ( n + 1 ) n + 1 n n s i n 1 n = lim n → ∞ ( n + 1 ) n + 1 n n + 1 ∗ s i n 1 n 1 n = lim n → ∞ ( 1 + 1 n ) n + 1 ∗ s i n 1 n 1 n = e 证:\lim\limits_{n\to\infty}\cfrac{(n+1)^{n+1}}{n^n}sin\cfrac{1}{n}\\ =\lim\limits_{n\to\infty}\cfrac{(n+1)^{n+1}}{n^{n+1}}*\cfrac{sin\cfrac{1}{n}}{\cfrac{1}{n}}\\ =\lim\limits_{n\to\infty}\bigg(1+\cfrac{1}{n}\bigg)^{n+1}*\cfrac{sin\cfrac{1}{n}}{\cfrac{1}{n}}\\ =e 证:n→∞limnn(n+1)n+1sinn1=n→∞limnn+1(n+1)n+1∗n1sinn1=n→∞lim(1+n1)n+1∗n1sinn1=e
例2: lim x → ∞ ( 1 − 1 x ) 2 x \lim\limits_{x\to\infty}(1-\cfrac{1}{x})^{2x} x→∞lim(1−x1)2x
证 : lim x → ∞ [ ( 1 − 1 x ) − x ] − 2 = e − 2 证:\lim\limits_{x\to\infty}\bigg[(1-\cfrac{1}{x})^{-x}\bigg]^{-2}=e^{-2} 证:x→∞lim[(1−x1)−x]−2=e−2
例3: lim n → ∞ ( ∑ k = 1 n 1 k ( k + 1 ) ) n \lim\limits_{n\to\infty}\bigg(\sum\limits^{n}_{k=1}\cfrac{1}{k(k+1)}\bigg)^n n→∞lim(k=1∑nk(k+1)1)n
证 : lim n → ∞ ( 1 − 1 n + 1 ) n = lim n → ∞ { [ 1 + ( 1 − ( n + 1 ) ) ] − ( 1 + n ) } − n 1 + n = e lim n → ∞ − n n + 1 = e − 1 证:\lim\limits_{n\to\infty}\bigg(1-\cfrac{1}{n+1}\bigg)^n\\ =\lim\limits_{n\to\infty}\bigg\{\bigg[1+\big(\cfrac{1}{-(n+1)}\big)\bigg]^{-(1+n)}\bigg\}^{-\cfrac{n}{1+n}}\\ =e^{\lim\limits_{n\to\infty}-\cfrac{n}{n+1}}\\ =e^{-1} 证:n→∞lim(1−n+11)n=n→∞lim{[1+(−(n+1)1)]−(1+n)}−1+nn=en→∞lim−n+1n=e−1
例4: lim x → 0 ( 1 + t a n x 1 + s i n x ) 1 x 3 \lim\limits_{x\to0}\bigg(\cfrac{1+tanx}{1+sinx}\bigg)^{\cfrac{1}{x^3}} x→0lim(1+sinx1+tanx)x31
证 : lim x → 0 ( 1 + t a n x 1 + s i n x ) 1 x 3 = lim x → 0 [ ( 1 + t a n x − s i n x 1 + s i n x ) 1 + s i n x t a n x − s i n x ] 1 x 3 ∗ t a n x − s i n x 1 + s i n x = e lim x → 0 1 1 + s i n x t a n x − s i n x x 3 = e lim x → 0 t a n x − s i n x x 3 = e lim x → 0 t a n x x ∗ 1 − c o s x x 2 = e 1 2 证:\lim\limits_{x\to0}\bigg(\cfrac{1+tanx}{1+sinx}\bigg)^{\cfrac{1}{x^3}}\\ =\lim\limits_{x\to0}\bigg[\bigg(1+\cfrac{tanx-sinx}{1+sinx}\bigg)^{\cfrac{1+sinx}{tanx-sinx}}\bigg]^{\cfrac{1}{x^3}*\cfrac{tanx-sinx}{1+sinx}}\\ =e^{\lim\limits_{x\to0}\cfrac{1}{1+sinx}\cfrac{tanx-sinx}{x^3}}\\ =e^{\lim\limits_{x\to0}\cfrac{tanx-sinx}{x^3}}\\ =e^{\lim\limits_{x\to0}}\cfrac{tanx}{x}*\cfrac{1-cosx}{x^2}\\ =e^{\cfrac{1}{2}} 证:x→0lim(1+sinx1+tanx)x31=x→0lim[(1+1+sinxtanx−sinx)tanx−sinx1+sinx]x31∗1+sinxtanx−sinx=ex→0lim1+sinx1x3tanx−sinx=ex→0limx3tanx−sinx=ex→0limxtanx∗x21−cosx=e21
无穷小比较
β → 0 , α → 0 ① : lim β α = 0 , β 是 α 的 高 阶 无 穷 小 . ② : lim β α = k ( k ≠ 0 , k ≠ 1 ) , β 是 α 的 同 阶 无 穷 小 . ③ : lim β α = 1 , β 是 α 的 等 价 无 穷 小 . 记 β ∽ α \beta\to0,\alpha\to0\\ ①:\lim\cfrac{\beta}{\alpha}=0,\beta是\alpha的高阶无穷小.\\ ②:\lim\cfrac{\beta}{\alpha}=k (k\neq0,k\neq1),\beta是\alpha的同阶无穷小.\\ ③:\lim\cfrac{\beta}{\alpha}=1,\beta是\alpha的等价无穷小.记\beta\backsim\alpha β→0,α→0①:limαβ=0,β是α的高阶无穷小.②:limαβ=k(k=0,k=1),β是α的同阶无穷小.③:limαβ=1,β是α的等价无穷小.记β∽α
常用等价无穷小
s i n x ∽ x t a n x ∽ x a r c s i n x ∽ x a r c t a n x ∽ x e x − 1 ∽ x l n ( 1 + x ) ∽ x a x − 1 ∽ x l n a ( a > 0 , a ≠ 1 ) log a ( 1 + x ) ∽ x l n a ( a > 0 , a ≠ 1 ) 1 − c o s x ∽ 1 2 x 2 ( 1 + β x ) α − 1 ∽ α β x ( 1 + x ) α − 1 ∽ α x sinx\backsim x\\ tanx\backsim x\\ arcsinx\backsim x\\ arctanx\backsim x\\ e^x-1\backsim x\\ ln(1+x)\backsim x\\ a^x-1\backsim xlna(a\gt0,a\neq1)\\ \log_a(1+x)\backsim \cfrac{x}{lna}(a\gt0,a\neq1)\\ 1-cosx\backsim \cfrac{1}{2}x^2\\ (1+\beta x)^\alpha-1\backsim \alpha\beta x\\ (1+x)^\alpha-1\backsim \alpha x\\ sinx∽xtanx∽xarcsinx∽xarctanx∽xex−1∽xln(1+x)∽xax−1∽xlna(a>0,a=1)loga(1+x)∽lnax(a>0,a=1)1−cosx∽21x2(1+βx)α−1∽αβx(1+x)α−1∽αx
例1: lim x → 0 ( 1 + x 2 ) 1 3 − 1 c o s x − 1 \lim\limits_{x\to0}\cfrac{(1+x^2)^\cfrac{1}{3}-1}{cosx-1} x→0limcosx−1(1+x2)31−1
I 1 = lim x → 0 ( 1 + x 2 ) 1 3 − 1 lim x → 0 ( c o s x − 1 ) = 1 3 x 2 − 1 2 x 2 = − 2 3 I 2 = lim x → 0 e 1 / 3 ∗ ln ( 1 + x 2 ) − 1 c o s x − 1 = lim x → 0 ln ( 1 + x 2 ) ∗ 1 3 c o s x − 1 = 1 3 x 2 − 1 2 x 2 = − 2 3 I_1=\cfrac{\lim\limits_{x\to0}(1+x^2)^\cfrac{1}{3}-1}{\lim\limits_{x\to0}(cosx-1)}\\ =\cfrac{\cfrac{1}{3}x^2}{-\cfrac{1}{2}x^2}\\ =-\cfrac{2}{3}\\ I_2=\lim\limits_{x\to0}\cfrac{e^{1/3*\ln(1+x^2)}-1}{cosx-1}\\ =\lim\limits_{x\to0}\cfrac{\ln(1+x^2)*\cfrac{1}{3}}{cosx-1}\\ =\cfrac{\cfrac{1}{3}x^2}{-\cfrac{1}{2}x^2}\\ =-\cfrac{2}{3} I1=x→0lim(cosx−1)x→0lim(1+x2)31−1=−21x231x2=−32I2=x→0limcosx−1e1/3∗ln(1+x2)−1=x→0limcosx−1ln(1+x2)∗31=−21x231x2=−32
例2: lim x → 0 ( 1 + 2 x ) x − 1 x s i n x \lim\limits_{x\to0}\cfrac{(1+2x)^x-1}{xsinx} x→0limxsinx(1+2x)x−1
I = lim x → 0 e x ln ( 1 + 2 x ) − 1 x 2 = lim x → 0 x ln ( 1 + 2 x ) x 2 = lim x → 0 2 x 2 x 2 = 2 I=\lim\limits_{x\to0}\cfrac{e^{x\ln(1+2x)}-1}{x^2}\\ =\lim\limits_{x\to0}\cfrac{x\ln(1+2x)}{x^2}\\ =\lim\limits_{x\to0}\cfrac{2x^2}{x^2}\\ =2 I=x→0limx2exln(1+2x)−1=x→0limx2xln(1+2x)=x→0limx22x2=2
例3: lim x → 0 e t a n x − e s i n x x 3 \lim\limits_{x\to0}\cfrac{e^{tanx}-e^{sinx}}{x^3} x→0limx3etanx−esinx
I = lim x → 0 e s i n x ∗ e t a n x − s i n x − 1 x 3 = lim x → 0 t a n x − s i n x x 3 = lim x → 0 t a n x x ∗ 1 − c o s x x 2 = 1 2 I=\lim\limits_{x\to0}e^{sinx}*\cfrac{e^{tanx-sinx}-1}{x^3}\\ =\lim\limits_{x\to0}\cfrac{tanx-sinx}{x^3}\\ =\lim\limits_{x\to0}\cfrac{tanx}{x}*\cfrac{1-cosx}{x^2}\\ =\cfrac{1}{2} I=x→0limesinx∗x3etanx−sinx−1=x→0limx3tanx−sinx=x→0limxtanx∗x21−cosx=21
连续性与间断点
f ( x ) 在 x 0 邻 域 内 有 定 义 , lim x → x 0 f ( x ) = f ( x 0 ) , 则 称 f ( x ) 在 x 0 处 连 续 . f(x)在x_0邻域内有定义,\lim\limits_{x\to x_0}f(x)=f(x_0),则称f(x)在x_0处连续. f(x)在x0邻域内有定义,x→x0limf(x)=f(x0),则称f(x)在x0处连续.
第
一
类
间
断
点
{
f
(
a
+
0
)
=
f
(
a
−
0
)
≠
f
(
a
)
可
去
间
断
点
f
(
a
+
0
)
≠
f
(
a
−
0
)
跳
跃
间
断
点
第一类间断点 \begin{cases} f(a+0)=f(a-0)\neq f(a)可去间断点\\ f(a+0)\neq f(a-0) 跳跃间断点 \end{cases}
第一类间断点{f(a+0)=f(a−0)=f(a)可去间断点f(a+0)=f(a−0)跳跃间断点
其他,第二类间断点
习题: lim x → 1 x 2 − x + 1 ( x − 1 ) 2 \lim\limits_{x\to1}\cfrac{x^2-x+1}{(x-1)^2} x→1lim(x−1)2x2−x+1
I = ∞ I=\infty I=∞
lim x → ∞ x ( x 2 + 1 − x ) \lim\limits_{x\to\infty}x(\sqrt{x^2+1}-x) x→∞limx(x2+1−x)
I = lim x → ∞ x 2 + 1 − x 1 x = lim x → ∞ 1 + 1 x 2 − 1 1 x 2 t = 1 x 2 , t → 0 = lim t → 0 1 + t − 1 t … 洛 必 达 = lim t → 0 1 2 1 + t = 1 / 2 I=\lim\limits_{x\to\infty}\cfrac{\sqrt{x^2+1}-x}{\cfrac{1}{x}}\\ =\lim\limits_{x\to\infty}\cfrac{\sqrt{1+\cfrac{1}{x^2}}-1}{\cfrac{1}{x^2}}\\ t=\cfrac{1}{x^2},t\to0\\ =\lim\limits_{t\to0}\cfrac{\sqrt{1+t}-1}{t}\dots洛必达\\ =\lim\limits_{t\to0}\cfrac{1}{2\sqrt{1+t}}\\ =1/2 I=x→∞limx1x2+1−x=x→∞limx211+x21−1t=x21,t→0=t→0limt1+t−1…洛必达=t→0lim21+t1=1/2
lim x → ∞ ( 2 x + 3 2 x + 1 ) x + 1 \lim\limits_{x\to\infty}\bigg(\cfrac{2x+3}{2x+1}\bigg)^{x+1} x→∞lim(2x+12x+3)x+1
I = lim x → ∞ [ ( 1 + 2 2 x + 1 ) 2 x + 1 2 ] ( x + 1 ) ∗ 2 2 x + 1 = e lim x → ∞ 2 x + 2 2 x + 1 = e lim x → ∞ ( 1 + 1 2 x + 1 ) = e I=\lim\limits_{x\to\infty}\bigg[\bigg(1+\cfrac{2}{2x+1}\bigg)^{\cfrac{2x+1}{2}}\bigg]^{(x+1)*\cfrac{2}{2x+1}}\\ =e^{\lim\limits_{x\to\infty}\cfrac{2x+2}{2x+1}}\\ =e^{\lim\limits_{x\to\infty}\big(1+\cfrac{1}{2x+1}\big)}\\ =e I=x→∞lim[(1+2x+12)22x+1](x+1)∗2x+12=ex→∞lim2x+12x+2=ex→∞lim(1+2x+11)=e
lim x → 0 t a n x − s i n x x 3 \lim\limits_{x\to0}\cfrac{tanx-sinx}{x^3} x→0limx3tanx−sinx
I = lim x → 0 t a n x x ∗ 1 − c o s x x 2 = 1 2 I=\lim\limits_{x\to0}\cfrac{tanx}{x}*\cfrac{1-cosx}{x^2}\\ =\cfrac{1}{2} I=x→0limxtanx∗x21−cosx=21
lim x → 0 ( a x + b x + c x 3 ) 1 / x ( a > 0 , b > 0 , c > 0 ) \lim\limits_{x\to0}\bigg(\cfrac{a^x+b^x+c^x}{3}\bigg)^{1/x}(a>0,b>0,c>0) x→0lim(3ax+bx+cx)1/x(a>0,b>0,c>0)
I = lim x → 0 e ln ( a x + b x + c x 3 ) x = lim x → 0 e a x ln a + b x ln b + c x ln c a x + b x + c x = e ln a + ln b + ln c 3 = ( a b c ) 1 / 3 I=\lim\limits_{x\to0}e^{\tiny\cfrac{\ln(\tiny\cfrac{a^x+b^x+c^x}{3})}{x}}\\ =\lim\limits_{x\to0}e^{\tiny\cfrac{a^x\ln a+b^x\ln b+c^x\ln c}{a^x+b^x+c^x}}\\ =e^{\tiny\cfrac{\ln a+\ln b+\ln c}{3}}\\ =(abc)^{1/3} I=x→0limexln(3ax+bx+cx)=x→0limeax+bx+cxaxlna+bxlnb+cxlnc=e3lna+lnb+lnc=(abc)1/3
lim x → π / 2 ( s i n x ) t a n x \lim\limits_{x\to\pi/2}(sinx)^{tanx} x→π/2lim(sinx)tanx
I = lim x → π / 2 e t a n x ln ( s i n x ) = lim x → π / 2 e l n ( s i n x ) 1 / t a n x = e lim x → π / 2 ln ( s i n x ) 1 / t a n x = e lim x → π / 2 c o s x / s i n x − s e c 2 x / t a n 2 x = e lim x → π / 2 − c o s x ∗ s i n x = 1 I=\lim\limits_{x\to\pi/2}e^{tanx\ln(sinx)}\\ =\lim\limits_{x\to\pi/2}e^{\tiny\cfrac{ln(sinx)}{1/tanx}}\\ =e^{\lim\limits_{x\to\pi/2}\tiny\cfrac{\ln(sinx)}{1/tanx}}\\ =e^{\lim\limits_{x\to\pi/2}\tiny\cfrac{cosx/sinx}{-sec^2x/tan^2x}}\\ =e^{\lim\limits_{x\to\pi/2}-cosx*sinx}\\ =1 I=x→π/2limetanxln(sinx)=x→π/2lime1/tanxln(sinx)=ex→π/2lim1/tanxln(sinx)=ex→π/2lim−sec2x/tan2xcosx/sinx=ex→π/2lim−cosx∗sinx=1
lim x → a l n x − l n a x − a ( a > 0 ) \lim\limits_{x\to a}\cfrac{lnx-lna}{x-a} (a>0) x→alimx−alnx−lna(a>0)
I = lim x → a 1 x = 1 a I = \lim\limits_{x\to a}\cfrac{1}{x}\\ =\cfrac{1}{a} I=x→alimx1=a1
lim x → 0 x t a n x 1 − x 2 − 1 \lim\limits_{x\to0}\cfrac{xtanx}{\sqrt{1-x^2}-1} x→0lim1−x2−1xtanx
I = lim x → 0 x 2 − 1 x x 2 = 1 I=\lim\limits_{x\to0}\cfrac{x^2}{-\cfrac{1}{x}x^2}\\ =1 I=x→0lim−x1x2x2=1
函数在闭区间的连续性
f ( x ) ∈ c [ a , b ] ⇒ { ( a , b ) 点 点 连 续 f ( a ) = f ( a + 0 ) , f ( b ) = f ( b − 0 ) f(x)\in c[a,b] \rArr\begin{cases} (a,b)点点连续\\\\ f(a)=f(a+0),f(b)=f(b-0) \end{cases} f(x)∈c[a,b]⇒⎩⎪⎨⎪⎧(a,b)点点连续f(a)=f(a+0),f(b)=f(b−0)
性质:
1.
f
(
x
)
∈
c
[
a
,
b
]
,
则
f
(
x
)
在
[
a
,
b
]
上
存
在
m
,
M
.
2.
f
(
x
)
∈
c
[
a
,
b
]
,
∃
k
>
0
,
∀
α
∈
[
a
,
b
]
,
f
(
α
)
≤
k
.
3.
f
(
x
)
∈
c
[
a
,
b
]
,
且
f
(
a
)
f
(
b
)
<
0
,
∃
ξ
∈
(
a
,
b
)
,
f
(
ξ
)
=
0.
(
零
点
定
理
)
4.
f
(
x
)
∈
c
[
a
,
b
]
,
∀
η
∈
[
a
,
b
]
,
则
∃
ξ
∈
[
a
,
b
]
,
f
(
ξ
)
=
η
(
介
值
定
理
)
f(x)\in c[a,b],则f(x)在[a,b]上存在m,M.\\ 2.f(x)\in c[a,b],\exist k>0,\forall \alpha\in[a,b],f(\alpha)\le k.\\ 3.f(x)\in c[a,b],且f(a)f(b)<0,\exist\xi\in(a,b),f(\xi)=0.(零点定理)\\ 4.f(x)\in c[a,b],\forall\eta\in[a,b],则\exist\xi\in[a,b],f(\xi)=\eta(介值定理)
f(x)∈c[a,b],则f(x)在[a,b]上存在m,M.2.f(x)∈c[a,b],∃k>0,∀α∈[a,b],f(α)≤k.3.f(x)∈c[a,b],且f(a)f(b)<0,∃ξ∈(a,b),f(ξ)=0.(零点定理)4.f(x)∈c[a,b],∀η∈[a,b],则∃ξ∈[a,b],f(ξ)=η(介值定理)
注:
①
f
(
x
)
∈
c
[
a
,
b
]
,
有
命
题
,
∃
ξ
∈
(
a
,
b
)
…
零
点
定
理
②
f
(
x
)
∈
c
[
a
,
b
]
,
有
命
题
,
∃
ξ
∈
[
a
,
b
]
…
介
值
定
理
①f(x)\in c[a,b],有命题,\exist\xi\in(a,b)\dots零点定理\\ ②f(x)\in c[a,b],有命题,\exist\xi\in[a,b]\dots介值定理
①f(x)∈c[a,b],有命题,∃ξ∈(a,b)…零点定理②f(x)∈c[a,b],有命题,∃ξ∈[a,b]…介值定理
例:
f ( x ) ∈ c [ 0 , 1 ] , f ( 1 2 ) = 1 , f ( 1 ) = 1 2 , 证 : ∃ ξ ∈ ( 0 , 1 ) , 使 f ( ξ ) = ξ f(x)\in c[0,1],f(\cfrac{1}{2})=1,f(1)=\cfrac{1}{2},证:\exist\xi\in(0,1),使f(\xi)=\xi f(x)∈c[0,1],f(21)=1,f(1)=21,证:∃ξ∈(0,1),使f(ξ)=ξ
证: 令 : T ( x ) = f ( x ) − x T ( 1 2 ) = f ( 1 2 ) − 1 2 = 1 2 T ( 1 ) = f ( 1 ) − 1 = − 1 2 T ( x ) 在 [ 0 , 1 ] 连 续 ∵ T ( 1 2 ) T ( 1 ) < 0 ∴ ∃ ξ ∈ ( 1 2 , 1 ) ⊂ ( 0 , 1 ) , 使 T ( ξ ) = 0 , 即 f ( ξ ) = ξ . 令:T(x)=f(x)-x\\ T(\cfrac{1}{2})=f(\cfrac{1}{2})-\cfrac{1}{2}=\cfrac{1}{2}\\ T(1)=f(1)-1=-\cfrac{1}{2}\\ T(x)在[0,1]连续\\ \because T(\cfrac{1}{2})T(1)<0\\ \therefore\exist\xi\in(\cfrac{1}{2},1)\subset(0,1),使T(\xi)=0,即f(\xi)=\xi. 令:T(x)=f(x)−xT(21)=f(21)−21=21T(1)=f(1)−1=−21T(x)在[0,1]连续∵T(21)T(1)<0∴∃ξ∈(21,1)⊂(0,1),使T(ξ)=0,即f(ξ)=ξ.
f ( x ) ∈ c [ 0 , 2 ] , 且 f ( 1 ) + f ( 2 ) + f ( 3 ) = 3 , 证 , ∃ ξ ∈ [ 0 , 2 ] 使 f ( ξ ) = 1. f(x)\in c[0,2],且f(1)+f(2)+f(3)=3,证,\exist\xi\in[0,2]使f(\xi)=1. f(x)∈c[0,2],且f(1)+f(2)+f(3)=3,证,∃ξ∈[0,2]使f(ξ)=1.
证: f ( x ) ∈ c [ 0 , 2 ] , ∃ m , M , 使 ∀ η ∈ [ 0 , 2 ] , m ≤ f ( η ) ≤ M ∴ 3 m ≤ f ( 1 ) + f ( 2 ) + f ( 3 ) ≤ 3 M ∴ m ≤ 1 ≤ M ∴ ∃ ξ ∈ [ 0 , 2 ] 使 f ( ξ ) = 1 f(x)\in c[0,2],\exist m,M,使\forall\eta\in[0,2],m\le f(\eta)\le M\\ \therefore 3m\le f(1)+f(2)+f(3)\le3M\\ \therefore m\le1\le M\\ \therefore\exist\xi\in[0,2]使f(\xi)=1 f(x)∈c[0,2],∃m,M,使∀η∈[0,2],m≤f(η)≤M∴3m≤f(1)+f(2)+f(3)≤3M∴m≤1≤M∴∃ξ∈[0,2]使f(ξ)=1
f ( x ) ∈ c [ a , b ] , ∀ p > 0 , q > 0 证 : ∃ ξ ∈ [ a , b ] 使 p f ( a ) + q f ( b ) = ( p + q ) f ( ξ ) f(x)\in c[a,b],\forall p>0,q>0\\证:\exist \xi\in[a,b]使pf(a)+qf(b)=(p+q)f(\xi) f(x)∈c[a,b],∀p>0,q>0证:∃ξ∈[a,b]使pf(a)+qf(b)=(p+q)f(ξ)
证: ∵ f ( x ) ∈ c [ a , b ] ∴ f ( x ) 在 [ a , b ] 存 在 m , M ( p + q ) m ≤ p f ( a ) + q f ( b ) ≤ ( p + q ) M m ≤ p f ( a ) + q f ( b ) q + p ≤ M ∃ ξ ∈ [ a , b ] , 使 f ( ξ ) = p f ( a ) + q f ( b ) q + p 即 p f ( a ) + q f ( b ) = ( p + q ) f ( ξ ) \because f(x)\in c[a,b]\\ \therefore f(x)在[a,b]存在m,M\\ (p+q)m\le pf(a)+qf(b)\le(p+q)M\\ m\le\cfrac{pf(a)+qf(b)}{q+p}\le M\\ \exist\xi\in[a,b],使f(\xi)=\cfrac{pf(a)+qf(b)}{q+p}\\ 即pf(a)+qf(b)=(p+q)f(\xi) ∵f(x)∈c[a,b]∴f(x)在[a,b]存在m,M(p+q)m≤pf(a)+qf(b)≤(p+q)Mm≤q+ppf(a)+qf(b)≤M∃ξ∈[a,b],使f(ξ)=q+ppf(a)+qf(b)即pf(a)+qf(b)=(p+q)f(ξ)
难点
洛必达法则和等价无穷小混合应用
洛必达法则及应用
洛必达法则参考此链接,混合应用刷题。
洛必达法则失效情况
只
有
当
lim
x
→
∙
f
(
x
)
F
(
x
)
=
∞
∞
0
0
lim
x
→
∙
f
(
x
)
F
(
x
)
=
A
∣
∞
时
洛
必
达
法
则
可
以
使
用
。
只有当\lim\limits_{x\to\bullet}\cfrac{f(x)}{F(x)}\overset{\tiny\cfrac{0}{0}}{\underset{\tiny\cfrac{\infty}{\infty}}{\huge=}}\lim\limits_{x\to\bullet}\cfrac{f(x)}{F(x)}=A|\infty时洛必达法则可以使用。
只有当x→∙limF(x)f(x)∞∞=00x→∙limF(x)f(x)=A∣∞时洛必达法则可以使用。
例:
lim
x
→
+
∞
∫
0
x
∣
sin
t
∣
d
t
x
=
\lim\limits_{x\to+\infty}\cfrac{\int^x_0|\sin t|dt}{x}=
x→+∞limx∫0x∣sint∣dt=
夹逼定理的应用
夹逼定理主要采用缩小扩大的方法,使两端取极限后大小相等。缩小扩大后尽量计算极限,若不相等,保留结果,寻找其他缩小扩大方法。
例:
lim
n
→
∞
(
2
n
+
3
n
+
4
n
)
1
n
\lim\limits_{n\to\infty}(2^n+3^n+4^n)^{\tiny\cfrac{1}{n}}
n→∞lim(2n+3n+4n)n1
在对上面公式扩大缩小易得到:
lim
n
→
∞
3
1
n
2
=
2
lim
n
→
∞
3
1
n
4
=
4
\lim\limits_{n\to\infty}3^{\tiny\cfrac{1}{n}}2=2\ \ \lim\limits_{n\to\infty}3^{\tiny\cfrac{1}{n}}4=4
n→∞lim3n12=2 n→∞lim3n14=4虽然没得到相等结果,但是缩小时括号内只取
4
n
4^n
4n得:
lim
n
→
∞
4
=
4
\lim\limits_{n\to\infty}4=4
n→∞lim4=4,得到结果。
数列极限
一般除了采用夹逼定理,还采用极限存在定理解决此类问题。
两个重要极限
lim
x
→
0
s
i
n
x
x
=
1
\lim\limits_{x\to0}\cfrac{sinx}{x}=1
x→0limxsinx=1
一般用来解决三角函数的问题。
lim
x
→
∞
(
1
+
1
x
)
x
=
e
\lim\limits_{x\to\infty}(1+\cfrac{1}{x})^x=e
x→∞lim(1+x1)x=e
一般处理
1
∞
1^{\infty}
1∞型的极限,是除了将
1
∞
→
ln
1
1
∞
1^{\infty}\to\cfrac{\ln1}{\tiny\cfrac{1}{\infty}}
1∞→∞1ln1的另一种解决方法。
间断点问题
这类问题主要围绕 arctan f ( x ) , 1 f ( x ) , e f ( x ) \arctan f(x),\cfrac{1}{f(x)},e^{f(x)} arctanf(x),f(x)1,ef(x)展开。
- 1 x \cfrac{1}{x} x1 在 x → 0 + x\to0^{+} x→0+和 x → 0 − x\to0^{-} x→0−时有完全相反的极限,即 + ∞ 和 − ∞ +\infty和-\infty +∞和−∞,因此经常与其他函数混合考察;同理 sec x 和 csc x \sec x和\csc x secx和cscx也值得注意。
- arctan x \arctan x arctanx 在 x → + ∞ x\to+\infty x→+∞和 x → − ∞ x\to-\infty x→−∞时,极限分别为 π 2 和 − π 2 \cfrac{\pi}{2}和-\cfrac{\pi}{2} 2π和−2π,经常与 1 f ( x ) \cfrac{1}{f(x)} f(x)1混合考察跳跃间断点。
-
1
f
(
x
)
,
e
f
(
x
)
\cfrac{1}{f(x)},e^{f(x)}
f(x)1,ef(x)混合考察第二类间断点。
考察主要的点: - 分段函数分段函数分段点
- 函数无定义点
*泰勒公式在极限中的应用
如何理解泰勒公式
知乎上关于泰勒公式的解释已经相当通俗易懂,这里就不再过多赘述。
常用麦克劳林公式(
x
0
=
0
x_0=0
x0=0时的泰勒公式).
由下面例题可知,麦克劳林公式的阶数由实际情况确定。
例:
lim
x
→
0
(
1
+
x
1
+
arctan
x
)
1
x
2
arcsin
x
\lim\limits_{x\to0}\bigg(\cfrac{1+x}{1+\arctan x}\bigg)^{\tiny\cfrac{1}{x^2\arcsin x}}
x→0lim(1+arctanx1+x)x2arcsinx1
=
e
lim
x
→
0
1
x
2
arcsin
x
ln
[
(
1
+
x
1
+
arctan
x
−
1
)
+
1
]
=
e
lim
x
→
0
1
x
2
arcsin
x
∗
x
−
arctan
x
1
+
arctan
x
=
e
lim
x
→
0
1
x
2
∗
(
x
+
o
(
x
1
)
)
∗
x
−
(
x
−
1
3
x
3
+
o
(
x
3
)
)
1
+
(
x
+
o
(
x
1
)
)
=
e
lim
x
→
0
1
3
x
3
x
4
+
x
3
=
e
1
3
=e^{\lim\limits_{x\to0}\cfrac{1}{x^2\arcsin x}\ln\big[(\cfrac{1+x}{1+\arctan x}-1)+1\big]}\\ =e^{\lim\limits_{x\to 0}\cfrac{1}{x^2\arcsin x}*\cfrac{x-\arctan x}{1+\arctan x}}\\ =e^{\lim\limits_{x\to 0}\cfrac{1}{x^2*(x+o(x^1))}*\cfrac{x-(x-\tiny\cfrac{1}{3}x^3+o(x^3))}{1+(x+o(x^1))}}\\ =e^{\lim\limits_{x\to 0}}\cfrac{\cfrac{1}{3}x^3}{x^4+x^3}\\ =e^{\tiny\cfrac{1}{3}}
=ex→0limx2arcsinx1ln[(1+arctanx1+x−1)+1]=ex→0limx2arcsinx1∗1+arctanxx−arctanx=ex→0limx2∗(x+o(x1))1∗1+(x+o(x1))x−(x−31x3+o(x3))=ex→0limx4+x331x3=e31
*微分中值定理在极限中的应用
求 lim n → ∞ n 2 ( arctan π n − arctan π n + 1 ) f ( x ) = arctan x , 由 拉 格 朗 日 中 值 定 理 得 : f ( π n ) − f ( π n + 1 ) = f ′ ( ζ ) ( π n − π n + 1 ) = 1 1 + ζ 2 ∗ π n 2 + n ∴ 原 式 = lim n → ∞ 1 ζ 2 + 1 ∗ π n 2 n 2 + n … ζ ∈ ( π n + 1 , π n ) = π 求\lim\limits_{n\to\infty}n^2\bigg(\arctan \cfrac{\pi}{n}-\arctan \cfrac{\pi}{n+1}\bigg)\\ f(x)=\arctan x,由拉格朗日中值定理得:\\ f(\cfrac{\pi}{n})-f(\cfrac{\pi}{n+1})=f^{'}(\zeta)(\cfrac{\pi}{n}-\cfrac{\pi}{n+1})\\ =\cfrac{1}{1+\zeta^{2}}*\cfrac{\pi}{n^2+n}\\ \begin{aligned} \therefore原式&=&\lim\limits_{n\to\infty}\cfrac{1}{\zeta^2+1}*\cfrac{\pi n^2}{n^2+n}\dots\zeta\in(\cfrac{\pi}{n+1},\cfrac{\pi}{n})&\\ &=\pi& \end{aligned} 求n→∞limn2(arctannπ−arctann+1π)f(x)=arctanx,由拉格朗日中值定理得:f(nπ)−f(n+1π)=f′(ζ)(nπ−n+1π)=1+ζ21∗n2+nπ∴原式==πn→∞limζ2+11∗n2+nπn2…ζ∈(n+1π,nπ)
*海涅定理(归结原则)的使用
lim
x
→
x
0
f
(
x
)
=
A
存
在
⇔
存
在
以
x
0
为
极
限
的
数
列
{
x
n
}
,
使
lim
n
→
∞
f
(
x
n
)
=
A
存
在
.
\lim\limits_{x\to x_0}f(x)=A存在\Harr存在以x_0为极限的数列\{x_n\},使\lim\limits_{n\to\infty}f(x_n)=A存在.
x→x0limf(x)=A存在⇔存在以x0为极限的数列{xn},使n→∞limf(xn)=A存在.
例:
lim
n
→
∞
(
n
tan
1
n
)
n
2
=
\lim\limits_{n\to\infty}(n\tan \cfrac{1}{n})^{n^2}=
n→∞lim(ntann1)n2=
取
x
n
=
1
n
,
n
→
∞
,
则
f
(
x
)
=
lim
x
→
0
(
1
x
tan
x
)
x
−
2
=
e
lim
x
→
0
ln
(
1
x
tan
x
)
x
2
=
e
lim
x
→
0
tan
x
−
x
x
3
=
e
1
3
∴
由
归
结
原
则
得
lim
n
→
∞
(
n
tan
1
n
)
n
2
=
e
1
3
取x_n=\cfrac{1}{n},n\to\infty,则f(x)=\lim\limits_{x\to0}(\cfrac{1}{x}\tan x)^{x^{-2}}=e^{\lim\limits_{x\to0}\tiny\cfrac{\ln(\cfrac{1}{x}\tan x)}{x^2}}\\ =e^{\lim\limits_{x\to0}\tiny\cfrac{\tan x-x}{x^3}}\\ =e^{\tiny\cfrac{1}{3}}\\ \therefore由归结原则得\lim\limits_{n\to\infty}(n\tan \cfrac{1}{n})^{n^2}=e^{\tiny\cfrac{1}{3}}
取xn=n1,n→∞,则f(x)=x→0lim(x1tanx)x−2=ex→0limx2ln(x1tanx)=ex→0limx3tanx−x=e31∴由归结原则得n→∞lim(ntann1)n2=e31
*使用定积分定义
∫ 0 1 f ( t ) d t = lim n → ∞ ∑ i = 1 n f ( i n ) 1 n \displaystyle\int_0^1f(t)dt=\lim\limits_{n\to\infty}\sum^{n}_{i=1}f\big(\cfrac{i}{n}\big)\cfrac{1}{n} ∫01f(t)dt=n→∞limi=1∑nf(ni)n1
入门练习
- lim x → 0 2 x + sin 2 x − 1 x = \lim\limits_{x\to0}\cfrac{2^x+\sin 2x-1}{x}= x→0limx2x+sin2x−1=
- lim x → 0 e x − e arcsin x x 3 = \lim\limits_{x\to0}\cfrac{e^x-e^{\arcsin x}}{x^3}= x→0limx3ex−earcsinx=
- lim x → 0 ln sin x x 2 x 2 = \lim\limits_{x\to0}\cfrac{\small\ln{\cfrac{\sin x}{x^2}}}{x^2}= x→0limx2lnx2sinx=
- lim x → 0 ( e 2 x + 1 2 ) − 1 1 − cos x = \lim\limits_{x\to0}\cfrac{\small(\cfrac{e^{2x}+1}{2})-1}{1-\cos x}= x→0lim1−cosx(2e2x+1)−1=
- 设 设 设 | a | < 1 , 则 lim n → ∞ ( 1 + a ) ( 1 + a 2 ) … ( 1 + a 2 n ) = ,则\lim\limits_{n\to\infty}(1+a)(1+a^2)\dots(1+a^{2^n})= ,则n→∞lim(1+a)(1+a2)…(1+a2n)=
- lim x → ∞ ( sin 2 2 x + cos 1 x ) x 2 = \lim\limits_{x\to\infty}\bigg(\sin^2\cfrac{2}{x}+\cos \cfrac{1}{x}\bigg)^{x^2}= x→∞lim(sin2x2+cosx1)x2=
- lim x → 0 [ x ln ( 1 + x ) ] 1 x = \lim\limits_{x\to0}\bigg[\cfrac{x}{\ln(1+x)}\bigg]^{\tiny\cfrac{1}{x}}= x→0lim[ln(1+x)x]x1=
- lim x → + ∞ [ ( x + 1 ) arctan x − π 2 x ] = \lim\limits_{x\to+\infty}\bigg[(x+1)\arctan x-\cfrac{\pi}{2}x\bigg]= x→+∞lim[(x+1)arctanx−2πx]=
- lim x → − ∞ ( x 2 − 2 x + 4 + x ) = \lim\limits_{x\to-\infty}(\sqrt{x^2-2x+4}+x)= x→−∞lim(x2−2x+4+x)=
- lim x → ∞ x 10 ( x + 1 ) n − x n = b ( ≠ 0 , ∞ ) , 则 n = _ _ _ _ _ , b = _ _ _ _ _ \lim\limits_{x\to\infty}\cfrac{x^{10}}{(x+1)^n-x^n}=b(\neq0,\infty),则n=\_\_\_\_\_,b=\_\_\_\_\_ x→∞lim(x+1)n−xnx10=b(=0,∞),则n=_____,b=_____
- lim x → 0 + x sin x = \lim\limits_{x\to0^+}x^{\sin x}= x→0+limxsinx=
- lim x → + ∞ ( x 2 + 2 x − x 3 − 3 x 2 3 ) = \lim\limits_{x\to+\infty}(\sqrt{x^2+2x}-\sqrt[3]{x^3-3x^2} )= x→+∞lim(x2+2x−3x3−3x2)=
- lim x → + ∞ ln ( x 3 + 2 x + 1 ) ln x + 3 = \lim\limits_{x\to+\infty}\cfrac{\ln(x^3+2x+1)}{\ln x+3}= x→+∞limlnx+3ln(x3+2x+1)=
- lim n → ∞ n ( 1 n 2 + 1 + 1 n 2 + 2 + ⋯ + 1 n 2 + n ) = \lim\limits_{n\to\infty}n\bigg(\cfrac{1}{n^2+1}+\cfrac{1}{n^2+2}+\dots+\cfrac{1}{n^2+n}\bigg)= n→∞limn(n2+11+n2+21+⋯+n2+n1)=
- 设 f ( x ) = { a , x = 1 , ( x − 1 ) ln x sin 2 π x , x ≠ 1 , 且 f ( x ) 在 x = 1 处 连 续 , 则 a = _ _ _ . 设f(x)= \begin{cases} a,&x=1,\\ \cfrac{(x-1)\ln x}{\sin^2\pi x},&x\neq1,\\ \end{cases} 且f(x)在x=1处连续,则a=\_\_\_. 设f(x)=⎩⎨⎧a,sin2πx(x−1)lnx,x=1,x=1,且f(x)在x=1处连续,则a=___.
答案
- ln 2 + 2 \ln 2+2 ln2+2
- − 1 6 -\cfrac{1}{6} −61
- − 1 6 -\cfrac{1}{6} −61
- 2
- 1 1 − a \cfrac{1}{1-a} 1−a1
- e 7 2 e^{\tiny\cfrac{7}{2}} e27
- e 1 2 e^{\tiny\cfrac{1}{2}} e21
- π 2 − 1 \cfrac{\pi}{2}-1 2π−1
- 2 2 2
- 11 1 11 11\ \ \ \ \ \cfrac{1}{11} 11 111
- 1
- 2
- 3
- 1
- 1 π 2 \cfrac{1}{\pi^2} π21
视频
关注微信公众号“翼点通”,回复“数二”领取。
