kaggle 提交结果(submission.csv) windows平台

本文详细介绍了在Kaggle平台上提交比赛结果的两种方法:网页界面提交和使用kaggle API指令提交。通过步骤说明如何创建Notebook、上传CSV文件、调整代码以符合竞赛要求,以及使用kaggle命令行工具进行自动化提交。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Kaggle上提交训练结果有两种方式:

使用页面提交

1:登录kaggle

2:右侧会显示自己正在参与的比赛

3:点击需要递交的竞赛名,进入相关页面

4:创建自己的Noetbook以及kernel

5:上传自己的csv,点击Add data,创建新文件夹,选择自己本地csv文件【网络不好,我试了多次才成功。。。】

6:csv上传成功后,调整自己的代码,是的最终的csv文件名称与竞赛要求一致

7:保存自己的版本

7:继续递交,点击Save Version后面的数字,进入到自己保存的版本里面,选择output,在选择Submit to Compettition

使用指令提交

1):安装kaggle

pip install kaggle

2):生成.kaggle文件夹

如果安装完成后,到C盘--用户--自己的用户名,查看是否有.kaggle文件夹

 

如果没有,在运行一下kaggle命令

pip install kaggle
kaggle competitions list

3):下载kaggle.json文件

登录kaggle网站,点击右上角自己的邮箱,点击自己的账户,进入到如下图所示页面,找到Create New Api Token按钮

点击下载kaggle.json文件,然后将下载的文件放到C盘--用户--自己的用户名--.kaggle文件夹下面。

 

 

4):提交csv文件

输入 :

kaggle competitions list

查看自己竞赛的名称

输入:-c:指定名称,-f:指定文件,-m:递交信息

kaggle competitions submit -c global-wheat-detection -f submission.csv -m "submit20200515"

 

                                                            (๑•ᴗ•๑)觉得有用,赏个植发的小钱钱。(๑•ᴗ•๑)

   

 

### 解决Kaggle平台提交CSV文件时出现的错误 当在Kaggle平台上尝试生成并提交`submission.csv`文件时遇到问题,通常是因为以下几个原因: - 文件命名不正确。确保生成的文件严格命名为`submission.csv`而非其他名称[^2]。 - Notebook运行过程中遇到了未处理的异常,导致未能成功创建所需的提交文件。 为了有效解决问题,可以采取以下措施来确保顺利生成和上传`submission.csv`文件: #### 正确设置工作目录 确认当前的工作路径指向正确的数据集位置,并且保存生成的结果到预期的位置。可以通过Python中的os模块来进行操作: ```python import os # 设置工作目录至指定路径 os.chdir('/kaggle/working') print(os.getcwd()) # 打印当前工作目录以验证更改是否生效 ``` #### 完善的数据加载与预处理逻辑 基于给定的例子,在加载训练数据的过程中存在一些潜在的问题,如缺少必要的导入语句以及拼写错误(`nomalizing`应改为`normalizing`)。以下是改进后的版本: ```python import numpy as np from csv import reader def to_int(value): """Convert string value into integer.""" try: return int(float(value)) except ValueError: raise Exception(f'Invalid conversion from "{value}"') def normalize(data_array): """Normalize the input array by dividing each element by its maximum absolute value within column""" max_abs_values = np.max(np.abs(data_array), axis=0) normalized_data = data_array / (max_abs_values + 1e-8) # Add small epsilon to avoid division-by-zero errors. return normalized_data def load_train_data(): labels, features = [], [] with open('train.csv', 'r') as csvfile: next(csvfile) # Skip header row for record in reader(csvfile): label, *feature_vector = map(to_int, record) labels.append(label) features.append(feature_vector) feature_matrix = np.array(features).astype(dtype=np.float32) target_labels = np.array(labels).reshape(-1, 1) processed_features = normalize(feature_matrix) return processed_features, target_labels ``` 上述代码修正了原始实现中存在的几个问题,包括但不限于更安全地将字符串转换成整型数值的方法、修复了函数名拼写的失误,并引入了一个简单的标准化过程用于特征缩放。 #### 创建并导出最终预测结果 完成模型训练之后,记得按照竞赛要求格式化输出预测结果,并将其存储在一个名为`submission.csv`的新文件中。下面是一个示范性的例子展示如何执行此步骤: ```python predictions = model.predict(test_set) # 假设model已经过适当训练,test_set包含了测试样本. with open('submission.csv', mode='w', newline='') as output_file: writer = csv.writer(output_file) writer.writerow(['ImageId', 'Label']) # Header according to competition rules image_id = range(1, len(predictions)+1) rows_to_write = zip(image_id, predictions.astype(int)) writer.writerows(rows_to_write) ``` 这段脚本会根据比赛规定写出带有两列——图像ID及其对应标签——的CSV文档作为参赛作品的一部分。
评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

微风❤水墨

你的鼓励是我最大的动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值