Kaggle上遇到的那些坑-----提交结果(submission.csv)

Kaggle上提交训练结果有两种方式:

  1. 在Kaggle页面上直接提交
  2. 使用指令提交

先看第一种提交方式

1、Kaggle页面上直接提交

        

不过,目前为止这个页面我只见过一次,后面再打开就不能提交了,好吧这是强迫我使用命令行提交啊。

2、使用指令提交结果

首先,你要从kaggle上下载一个API Token,用以标识你的身份:

        

点击下载后,会得到一个Kaggle.json的文件,将这个文件放到/.kaggle文件夹下:

       

注意:文件路径是在Administrator/.kaggle下,置于为什么kaggle前面会有一个点,好像是在mac下表示不可见。

其次,就是要安装kaggle,

    安装方式为:命令行输入 pip install kaggle

 

最后,赋值命令行

       

点击copy按钮,将复制的命令输入到cmd窗口。这是一个api接口,感兴趣的可以去读一下。

最后,执行代码:

       

注意:关于这个submission.csv的存放位置,一定要放在Administrator下,一定要放在Administrator下,一定要放在Administrator下,重要的事情说三遍!!!

 

 

 

 

 

 

 

 

### 解决Kaggle平台提交CSV文件时出现的错误 当在Kaggle平台上尝试生成并提交`submission.csv`文件时遇到问题,通常是因为以下几个原因: - 文件命名不正确。确保生成的文件严格命名为`submission.csv`而非其他名称[^2]。 - Notebook运行过程中遇到了未处理的异常,导致未能成功创建所需的提交文件。 为了有效解决问题,可以采取以下措施来确保顺利生成和上传`submission.csv`文件: #### 正确设置工作目录 确认当前的工作路径指向正确的数据集位置,并且保存生成的结果到预期的位置。可以通过Python中的os模块来进行操作: ```python import os # 设置工作目录至指定路径 os.chdir('/kaggle/working') print(os.getcwd()) # 打印当前工作目录以验证更改是否生效 ``` #### 完善的数据加载与预处理逻辑 基于给定的例子,在加载训练数据的过程中存在一些潜在的问题,如缺少必要的导入语句以及拼写错误(`nomalizing`应改为`normalizing`)。以下是改进后的版本: ```python import numpy as np from csv import reader def to_int(value): """Convert string value into integer.""" try: return int(float(value)) except ValueError: raise Exception(f'Invalid conversion from "{value}"') def normalize(data_array): """Normalize the input array by dividing each element by its maximum absolute value within column""" max_abs_values = np.max(np.abs(data_array), axis=0) normalized_data = data_array / (max_abs_values + 1e-8) # Add small epsilon to avoid division-by-zero errors. return normalized_data def load_train_data(): labels, features = [], [] with open('train.csv', 'r') as csvfile: next(csvfile) # Skip header row for record in reader(csvfile): label, *feature_vector = map(to_int, record) labels.append(label) features.append(feature_vector) feature_matrix = np.array(features).astype(dtype=np.float32) target_labels = np.array(labels).reshape(-1, 1) processed_features = normalize(feature_matrix) return processed_features, target_labels ``` 上述代码修正了原始实现中存在的几个问题,包括但不限于更安全地将字符串转换成整型数值的方法、修复了函数名拼写的失误,并引入了一个简单的标准化过程用于特征缩放。 #### 创建并导出最终预测结果 完成模型训练之后,记得按照竞赛要求格式化输出预测结果,并将其存储在一个名为`submission.csv`的新文件中。下面是一个示范性的例子展示如何执行此步骤: ```python predictions = model.predict(test_set) # 假设model已经过适当训练,test_set包含了测试样本. with open('submission.csv', mode='w', newline='') as output_file: writer = csv.writer(output_file) writer.writerow(['ImageId', 'Label']) # Header according to competition rules image_id = range(1, len(predictions)+1) rows_to_write = zip(image_id, predictions.astype(int)) writer.writerows(rows_to_write) ``` 这段脚本会根据比赛规定写出带有两列——图像ID及其对应标签——的CSV文档作为参赛作品的一部分。
评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值