GAN:GAN论文学习

本文介绍了2014年提出的生成对抗网络(GAN)的基本概念,包括生成器和判别器的作用。对比了GAN与CNN的训练机制,强调GAN是动态博弈过程。还对GAN的公式进行了通俗解释,展示了生成器生成假图并试图欺骗判别器的机制。
摘要由CSDN通过智能技术生成

 论文:https://arxiv.org/pdf/1406.2661.pdf

发表:2014 

一、GAN简介:Generative Adversarial Network
GAN是由Ian Goodfellow于2014年提出,GAN:全名叫做生成对抗网络。GAN的目的就是无中生有,以假乱真。

GAN由两部分构成:生成器G + 判别器D

生成器:将随机输入的高斯噪声映射成图像(“假图”)

判别器:判断输入图像是否来自生成器的概率,即判断输入图像是否为假图的概率。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

微风❤水墨

你的鼓励是我最大的动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值