个人总结,仅供参考,欢迎加好友一起讨论
文章目录
- 系分 - 项目管理
- 考点摘要
- 范围管理
- 时间管理
- 时间管理 - 关键路径法及几个概念
- 时间管理 - 箭线图法(双代号网络图,ADM)
- 时间管理 - 前导图法(单代号网络图,PDM)
- 时间管理 - 总时差与自由时差
- 时间管理 - 甘特图(Gantt)
- 成本管理
- 成本管理 - 挣值分析
- 成本管理 - 挣值曲线
- 软件质量管理 - 质量模型
- 软件质量管理 - 质量保证与质量控制
- 质量工具与项目管理三角形
- 软件配置管理SCM - 配置项与配置库
- 软件配置管理SCM - 版本控制
- 软件配置管理SCM - 变更控制
- 软件配置管理SCM - 软件工具
- 软件配置管理SCM - 配置状态报告
- 项目管理工具
- 软件过程改进 - CMMI
- 软件评审
- 项目管理 - 典型相关例题
系分 - 项目管理
考点摘要
- 范围管理(★★)
- 时间管理(★★★★)
- 成本管理(★)
- 软件质量管理(★★)
- 软件配置管理(★)
范围管理
范围管理:确定项目的边界,即哪些工作是项目应该做的,哪些工作不应该包括在项目中。
例题1:
例题1解析与答案:
答案:C
解析:略
时间管理
时间管理:也叫进度管理,就是采用科学的方法,确定进度目标,编制进度计划和资源供应计划,进行进度控制,在与质量、成本目标协调的基础上,实现工期目标。
例题2:
例题2解析与答案:
答案:B
解析:略
时间管理 - 关键路径法及几个概念
关键路径法是在制订进度计划时使用的一种进度网络分析技术。关键路线法沿着项目进度网络路线进行正向与反向分析,从而计算出所有计划活动理论上的最早开始与完成日期、最迟开始与完成日期,不考虑任何资源限制。
-
总时差(松弛时间):在不延误总工期的前提下,该活动的机动时间。活动的总时差等于该活动最迟完成时间与最早完成时间之差,或该活动最迟开始时间与最早开始时间之差。
-
自由时差:在不影响紧后活动的最早开始时间前提下,该活动的机动时间。
对于有紧后活动的活动,其自由时差等于所有紧后活动最早开始时间减本活动最早完成时间所
得之差的最小值。对于没有紧后活动的活动,也就是以网络计划终点节点为完成节点的活动,其自由时差等于计划工期与本活动最早完成时间之差。
-
对于网络计划中以终点节点为完成节点的活动,其自由时差与总时差相等。此外,由于活动的自由时差是其总时差的构成部分,所以,当活动的总时差为零时,其自由时差必然为零,可不必进行专门计算。
-
关键路径可能会有多条。
时间管理 - 箭线图法(双代号网络图,ADM)
- 双代号: 节点上的代号(如1、2、3、4…)和箭线上的代号(如A、B、C、D…)。
时间管理 - 前导图法(单代号网络图,PDM)
- 单代号:指的是像A、B、C、D、E、F、G、H这种编号就表示单个代号。
- 一般情况下,单代号的图使用较多。
- 像A、B、C、D、E、F、G、H种编号代表的是某个活动。
- 根据各个活动前后关系,展现活动依赖图。
- 根据上图中的右下图例,一般情况下,活动编号和持续时间(编号上方的数据)会被告知(单位一般是天)。
- 其他的数据需要算出。
上图描述(正向推导ES与EF):
- 通常最早的开始时间是ES肯定为0,按照上图活动A为第一个活动节点,最早开始时间ES=0。又因为活动A的持续时间为5天,那么活动A的最早完成时间EF = 0 + 5 = 5天。
- 活动B和活动C通过上图描述看出,都是要求活动A结束才可以开始,也就是活动B和活动C的最早开始时间ES等于活动A的最早完成时间EF。所以,活动B和活动C最早开始时间ES都是5天。又因为活动B的持续时间为2天,那么活动B的最早完成时间EF = 5 + 2 = 7天。又因为活动C的持续时间为8天,那么活动B的最早完成时间EF = 5 + 8 = 13天。
- 按照这种推导状态,综合上图描述,整个项目最后一个活动H的最早完成时间为48天,那就代表这项目的最短周期为48天。
- 需要注意的是,类似活动D需要在活动B和C两个一起完成的情况下才开始的,那么需要选择活动B和C中最大的最早完成时间才可以,故活动D最早开始时间ES应该是活动C的最早完成时间13天。假设动D最早开始时间ES选择活动B的最早完成时间7天,此时活动C还没结束,活动D不能开始。所以,正向推导情况下,某个活动的最早开始时间ES取决于其前置活动的最早完成时间的最大值。
- 同理,活动G最早开始时间ES也是取决于活动D和E的最早完成时间的最大值。
- 为什么从第0天开始,从计算机角度上认为其就是第1天,有时候题目也会按照1开始计算,计算方式大同小异。其实从0天开始计算,更符合时间逻辑。
上图描述(反向推导LS与LF):
- 通常,整个项目最后一个活动点的最早完成时间EF等于最迟完成时间LF。所以,最后一个活动H的最迟完成时间LF是48天。
- 又因为活动H的持续时间为10,那么活动H的最迟开始时间LS = 48 - 10 = 38天。
- 反推活动H的前置活动F和G,所以活动F和G的最迟完成时间LF等于活动H的最迟开始时间38天。
- 活动F的持续时间是10,那么活动F的最迟开始时间LS = 38 - 10 = 28天。同样,活动G的持续时间是15,那么活动G的最迟开始时间LS = 38 - 15 = 23天。
- 需要注意的是,反向推导情况下,类似活动D的最迟完成时间取决于活动F和G,这种情况下,对于活动D需要取其后置任务中最迟开始时间的最小值。故活动D的最迟完成时间LF应该取活动G的最迟开始时间LS是23天。
- 这时候我们可以按照正向思维推导一下验证是否合理。比如活动D的最迟完成时间LF是23天,又因为活动F和G需要在活动D结束之后才能开始,活动D的最迟完成时间LF是23天,活动F和G的最迟开始时间LS分别是28天和23天,这种情况下是没有任何问题。假设如果活动D的最迟完成时间LF是28天,活动F和G的最迟开始时间LS分别是28天和23天,那这种情况影响到了活动G的最迟开始时间LS,所以不合理。
- 所以,反向推导情况下,某个活动的最迟完成时间LF取决于其所有后置活动的最迟开始时间的最小值。
- 同理,活动C的最迟完成时间LF取决于活动D和E的最迟开始时间的最小值,故应该是13天。
最后描述:
- 正向推导和反向推导结束之后,我们就可以计算“总时差”了。
- 活动的每个活动节点的“总时差”是用最迟开始时间LS最早开始时间ES,或者是最迟完成时间LF减最早完成时间EF。总时差是影响总工期也就是关键路径的主要因素,也就是活动的总时差的改变,可能会改变整个项目的关键路径。
- 根据这总计算方式,求得,上述图中:活动A、C、D、G、H的总时差均都是0,所以A→C→D→G→H是整个项目的关键路径。
- 所以项目的关键路径对应项目的最短总工期,并且关键路径是最长路径。此时的最短总工期代表的不是时间最小值,是代表所有的活动节点都必须完成的情况下的用时最短的总工期,此时所有活动工期最大之和是最长路径。
- 所以,这种题目,如果只需要求关键路径,只需要找出所有活动节点工期总和最大的路径即可。
- 双代号网络图的推导方式大同小异,如下所示:
- 双代号网络图中,需要注意的是“虚线“路径。“虚线“路径表示为虚活动,既不占时间,也不占资源,但不能去除。但是虚活动有可能在关键路径中。
- 某种意义上,双代号网络图不是很好理解,只需要注意箭线上的活动节点和活动时间即可。其推导如单代号网络图一样套路。
时间管理 - 总时差与自由时差
- 总时差计算,是用最迟开始时间LS减最早开始时间ES,或者是最迟完成时间LF减最早完成时间EF。
- 总时差是影响总工期也就是关键路径的主要因素,也就是活动的总时差的改变,可能会改变整个项目的关键路径。
- 自由时差计算,是和“最早”时间有关系,也就是后面活动的最早开始时间减去前面活动的最早完成时间。
- 例如上图模块A1到单元测试A,其自由时差是单元测试A的最早开始时间减去模块A1的最早完成时间,也就是5 - 3 = 2天。
- 自由时差的意义就是,前置活动延误自由时差天数,并不会影响后置任务的开始。假设模块A1延误2天结束,延误2天并没有超过总时差3天,也没有超过自由时差2天,不影响总工期,也不会影响到单元测试A的开始。假设模块A1延误3天,延误3天并没有超过模块A1的总时差,也不影响总工期,但是它延误了后置任务单元测试A的最早开始时间。因为单元测试A这时需要从第6天开始,持续4天完成后第10天结束,原本它有1天的总时差,可以有1天的“摸鱼时间”,但是由于延误单元测试A的总时差1天“摸鱼时间”被“剥夺”了,这样不行。
- 自由时差判断意义是,前置任务是否延误后置的最早开始时间。
- 总时差的判断意义是,任务的延误时间是否超过总时差,是否影响到后置任务的最迟开始时间。
- 特别情况下,对于没有紧后活动的活动,也就是终点节点,其自由时差等于计划工期与本活动最早完成时间之差。对于有紧后活动的活动(2个或者多个),其自由时差等于所有紧后活动最早开始时间减本活动最早完成时间所得之差的最小值。
时间管理 - 甘特图(Gantt)
描述:
-
甘特图中,细线代表计划值,粗细代表实际值。
-
优点:甘特图直观、简单、容易制作,便于理解,能很清晰地标识出每一项任务的起始与结束时间,一般适用比较简单的小型项目,可用于WBS的任何层次、进度控制、资源优化、编制资源和费用计划。
-
缺点:不能系统地表达一个项目所包含的各项工作之间的复杂关系,难以进行定量的计算和分析,以及计划的优化等。
成本管理
成本管理:在整个项目的实施过程中,为确保项目在批准的预算条件下尽可能保质按期完成,而对所需的各个过程进行管理与控制。
成本管理 - 挣值分析
- AC:已完成工作量的实际成本,99%题目中会告知。
- EV:已完成工作量的预算成本,EV = 已完成工作量 × 预算定额。
- PV:计划工作量的预算成本,PV = 计划工作量 × 预算定额。
示例:
某公司在线测试项目涉及对10个函数代码的编写(假设每个函数代码的编写工作量相等),项目由1个程序员进行编程,计划在10天内完成,总体预算是1000元,每个函数的平均成本是100元。项目进行到了第5天,实际消耗费用是400元,完成了3个函数代码的编写。
解析:
已完成工作量的实际成本AC是400元,已完成工作量的预算成本EV是3个 × 100元 = 300元
计划工作量的预算成本PV是500元,因为计划10天1000元,现在进行到了第5天,总体预算的一半的工作量
- SV:进度偏差,SV = EV - PV,偏差为负代表当前情况不乐观,进度延迟
- CV:成本偏差,CV = EV - AC,偏差为负代表当前情况不乐观,成本超支
- SPI:进度绩效指数,SPI = EV / PV,看比例判断进度偏差情况
- CPl:成本绩效指数,CPl = EV / AC,看比例判断成本偏差情况
其他计算:
-
BAC:完工预算,BAC = 完工时的PV总和
-
ETC,剩余工作的成本,ETC = BAC - EV 或者 ETC = ( BAC - EV ) / CPl
-
EAC,完工估算,EAC = AC + ETC
例题3:
例题3解析与答案:
答案:C
解析:进度偏差SV = EV - PV (38410 - 44100 = -5690),成本偏差CV = EV - AC(38410 - 47750 = -9340)
进度绩效指数SPI = EV / PV(38410 / 44100 = 0.87)
成本绩效指数CPl = EV / AC(38410 / 47750 = 0.80)
剩余工作的成本ETC = BAC - EV(167500 - 38410 = 129090)
或者 ETC = ( BAC - EV ) / CPl(129090 / 0.8 = 161362.5)
完工估算EAC = AC + ETC(47750 + 129090 = 176840)或者(161362.5 + 129090 = 290452.5)
综上,故选择C
成本管理 - 挣值曲线
软件质量管理 - 质量模型
软件质量管理 - 质量保证与质量控制
- 质量保证一般是每隔一定时间(例如,每个阶段末)进行的,主要通过系统的质量审计和过程分析来保证项目的质量。独特工具包括:质量审计和过程分析。
- 质量控制是实时监控项目的具体结果,以判断它们是否符合相关质量标准,制订有效方案,以消除产生质量问题的原因。
- 一定时间内质量控制的结果也是质量保证的质量审计对象。质量保证的成果又可以指导下一阶段的质量工作,包括质量控制和质量改进。
质量工具与项目管理三角形
软件配置管理SCM - 配置项与配置库
配置项:
- 基线配置项(可交付成果):需求文档、设计文档、源代码、可执行代码、测试用例、运行软件所需数据等,它们经评审和检查通过后进入软件配置管理(SCM)
- 非基线配置项:各类计划(如项目管理计划,进度管理计划)、各类报告
配置库:
- 开发库(动态库、程序员库、工作库;动态系统、开发者系统、开发系统、工作空间):保存正在开发的配置实体。
- 受控库(主库、系统库;主系统、受控系统):管理基线。
- 产品库(静态库、产品库、软件仓库;静态系统):最终产品。
例题4:
例题4解析与答案:
答案:C
解析:略
软件配置管理SCM - 版本控制
- 处于草稿状态的配置项的版本号格式为:0.YZ,其中YZ数字范围为01~99。随着草稿的不断完善,YZ的取值应递增。YZ的初值和增幅由开发者自己把握。
- 处于正式发布状态的配置项的版本号格式为:X.Y。其中X为主版本号,取值范围为1~9;Y为次版本号,取值范围为1 ~ 9。配置项第—次正式发布时,版本号为1.0。
- 如果配置项的版本升级幅度比较小,一般只增大Y值,X值保持不变。只有当配置项版本升级幅度比较大时,才允许增大X值。
- 处于正在修改状态的配置项的版本号格式为:X.YZ。在修改配置项时,一般只增大Z值,X.Y值保持不变。
软件配置管理SCM - 变更控制
软件配置管理SCM - 软件工具
按软件过程活动将软件工具分为:
- 软件开发工具:需求分析工具、设计工具、编码与排错工具。
- 软件维护工具:版本控制工具(VSS、CVS、SCCS、SVN、GIT)、文档分析工具、开发信息库工具、逆向工程工具、再工程工具。
- 软件管理和软件支持工具:项目管理工具、配置管理工具、软件评价工具、软件开发工具的评价和选择。
软件配置管理SCM - 配置状态报告
配置状态报告的目的及时准确地给出配置项的当前状况,供相关人员了解。
项目管理工具
软件过程改进 - CMMI
软件评审
项目管理 - 典型相关例题
例题5:
例题5解析与答案:
答案:C
解析:根据题目表格描述,画出网络图,如下:
如果画出的网络图没有结尾点,我们可以粗浅认为最后有一个虚拟的结尾点(图中红线与红圈)
根据上面网络图可以看出,项目总工期是14天,关键路径是:A→B→E
作业D的总时差是2天,故可以延长2天
例题6:
例题6解析与答案:
答案:B C
解析:网络图略,可以自己尝试,如下:
算的关键路径是:A→D→F→H,为13
当作业C拖延3周后,关键路径发生改变,变为:A→C→E→H,长度为15
所以总工期从13周,延长至15周,一共拖延2周
例题7:
例题7解析与答案:
答案:B
解析:首先紧后工作的最迟开始时间对标最迟完成时间,排除A和C
如果一个工作节点有多个紧后工作,该工作节点的最迟完成时间应该是所有紧后工作最迟开始时间的最小值
题8:
例题8解析与答案:
答案:B
解析:在双代号网络图中,某工作节点的总时差等于紧后工作总时差的最小值与本工作自由时差之和
题9:
例题9解析与答案:
答案:A
解析:自由时差等于本工作与所有紧后工作之间的时间间隔的最小值
题10:
例题10解析与答案:
答案:D
解析:关键路径是DHC,12周。G在FG的路径上,并不在关键路径上,FG需要8周,所有D可拖延4周
题11:
例题11解析与答案:
答案:A
解析:参考下图:
本工程的关键路径为:ACDHJ、ACEHJ,活动3→7即活动G的总时差为2
故活动G不在关键路径上,且由于活动I的自由时差FF活动I=17-15=2
活动G的自由时差FF活动G=12-12=0,但活动G的总时差TF活动G=2
故活动G的工期延后2天,活动I历时不变,总工期将不受影响