K-均值聚类算法对未标注数据分组(1)

1. K-均值聚类算法

优点:容易实现。
缺点:可能收敛到局部最小值,在大规模数据集上收敛较慢。
适用数据类型:数值型数据。

K-均值算法的工作流程是这样的。首先,随机确定&个初始点作为质心。然后将数据集中的每个点分配到一个簇中,具体来讲,为每个点找距其最近的质心,并将其分配给该质心所对应的簇。这一步完成之后,每个簇的质心更新为该簇所有点的平均值。

上述过程的伪代码表示如下:

创建k个点作为起始质心(经常是随机选择)
当任意一个点的簇分配结果发生改变时
对养据集中的每个数据点
对每个质心
计算质心与数据点之间的距离
将数据点分配到距其最近的簇
对每一个簇,计算簇中所有点的均值并将均值作为质心

k均值聚类算法:

# -*- coding: utf-8 -*-
from numpy import *

# K-均值聚类支持函数
def loadDataSet(fileName):      
    dataMat = []                
    fr = open(fileName)
    for line in fr.readlines():
        curLine = line.strip().split('\t')
        fltLine = map(float,curLine) 
        dataMat.append(fltLine)
    return dataMat

# 计算两个向量的欧式距离
def distEclud(vecA, vecB):
    return sqrt(sum(power(vecA - vecB, 2))) 

# 为给定数据集构建一个包含k个随机质心的集合,是以每列的形式生成的
def randCent(dataSet, k):
    n = shape(dataSet)[1]
    centroids = mat(zeros((k,n))) 
    for j in range(n):  
        minJ = min(dataSet[:,j])  # 找到每一维的最小
        rangeJ = float(max(dataSet[:,j]) - minJ) # 每一维的最大和最小值之差
        centroids[:,j] = mat(minJ + rangeJ * random.rand(k,1)) # 生成随机值
        #print centroids[:,j]
    return centroids  # 返回随机质心,是和数据点相同的结构

# k--均值聚类算法(计算质心--分配--重新计算)
def kMeans(dataSet, k, distMeas=distEclud, createCent=randCent): # k是簇的数目
    m = shape(dataSet)[0]  # 得到样本的数目
    clusterAssment = mat(zeros((m,2))) #  创建矩阵来存储每个点的簇分配结果
                                       #  第一列:记录簇索引值,第二列:存储误差,欧式距离的平方
    centroids = createCent(dataSet, k)  # 创建k个随机质心
    clusterChanged = True
    while clusterChanged:  # 迭代使用while循环来实现
        clusterChanged = False  
        for i in range(m):  # 遍历每个数据点,找到距离每个点最近的质心
            minDist = inf; minIndex = -1
            for j in range(k):  # 寻找最近的质心
                distJI = distMeas(centroids[j,:],dataSet[i,:])
                if distJI < minDist:
                    minDist = distJI; minIndex = j
            if clusterAssment[i,0] != minIndex: # 更新停止的条件
                clusterChanged = True
            clusterAssment[i,:] = minIndex,minDist**2 # minDist**2就去掉了根号         
        for cent in range(k):  # 更新质心的位置
            ptsInClust = dataSet[nonzero(clusterAssment[:,0].A==cent)[0]] 
            centroids[cent,:] = mean(ptsInClust, axis=0) # 然后计算均值,axis=0:沿列方向 
    print 'centroids:',centroids
    return centroids, clusterAssment # 返回簇和每个簇的误差值,误差值是当前点到该簇的质心的距离


# 主函数
datMat=mat(loadDataSet('testSet.txt'))
rand_centroids=randCent(datMat, 2)
print 'Random centroids:',rand_centroids
myCentroids,clustAssing=kMeans(datMat,4)
print 'myCentroids:',myCentroids
#centList,myNewAssments=biKmeans(datMat, 3)

运行结果:

Random centroids: [[ 0.47004012 -0.70046073]
 [ 4.59776536  2.61143197]]
centroids: [[-3.38237045 -2.9473363 ]
 [-2.46154315  2.78737555]
 [ 2.80293085 -2.7315146 ]
 [ 2.6265299   3.10868015]]
myCentroids: [[-3.38237045 -2.9473363 ]
 [-2.46154315  2.78737555]
 [ 2.80293085 -2.7315146 ]
 [ 2.6265299   3.10868015]]

上面的结果可以看出得到了4个质心

2. 二分k-均值算法

在K-均值聚类中簇的数目k是一个用户预先定义的参数,那么用户如何才能知道乂的选择是否正确?如何才能知道生成的簇比较好呢?在包含簇分配结果的矩阵中保存着每个点的误差,即该点到簇质心的距离平方值。

使用后处理来提高聚类性能:

  • K-均值算法收敛到了局部最小值,而非全局最小值(局部最小值指结果还可以但并非最好结果,全局最小值是可能的最好结果)。
  • 一种用于度量聚类效果的指标是SSE(Sum of Squared Error,误差平方和。SSE值越小表示数据点越接近于它们的质心,聚类效果也越好。因为对误差取了平方,因此更加重视那些远离中心的点。一种肯定可以降低SSE值的方法是增加簇的个数,但这违背了聚类的目标。聚类的目标是在保持族数目不变的情况下提高簇的质量。那么如何进行改进?可以对生成的簇进行后处理,一种方法是将具有最大SSE值的簇划分成两个簇。具体实现时可以将最大簇包含的点过滤出来并在这些点上运行尺-均值算法,其中的K设为2。

为克服k-均值算法收敛于局部最小值的问题:

  • 二分k-均值(bisecting K-means)算法,该算法首先将所有点作为一个簇,然后将该簇一分为二。之后选择其中一个簇继续进行划分,选择哪一个簇进行划分取决于对”其划分是否可以最大程度降低SSE的值。上述基于SSE的划分过程不断重复,直到得到用户指定的簇数目为止。
  • 另一种做法是选择SSE最大的簇进行划分,直到簇数目达到用户指定的数目为止。这个做法听起来并不难实现。

下面就来看一下该算法的实际效果。

# -*- coding: utf-8 -*-
from numpy import *

# K-均值聚类支持函数
def loadDataSet(fileName):      
    dataMat = []                
    fr = open(fileName)
    for line in fr.readlines():
        curLine = line.strip().split('\t')
        fltLine = map(float,curLine) 
        dataMat.append(fltLine)
    return dataMat

# 计算两个向量的欧式距离
def distEclud(vecA, vecB):
    return sqrt(sum(power(vecA - vecB, 2))) 

# 为给定数据集构建一个包含k个随机质心的集合,是以每列的形式生成的
def randCent(dataSet, k):
    n = shape(dataSet)[1]
    centroids = mat(zeros((k,n))) 
    for j in range(n):  
        minJ = min(dataSet[:,j])  # 找到每一维的最小
        rangeJ = float(max(dataSet[:,j]) - minJ) # 每一维的最大和最小值之差
        centroids[:,j] = mat(minJ + rangeJ * random.rand(k,1)) # 生成随机值
        #print centroids[:,j]
    return centroids  # 返回随机质心,是和数据点相同的结构

# k--均值聚类算法(计算质心--分配--重新计算)
def kMeans(dataSet, k, distMeas=distEclud, createCent=randCent): # k是簇的数目
    m = shape(dataSet)[0]  # 得到样本的数目
    clusterAssment = mat(zeros((m,2))) #  创建矩阵来存储每个点的簇分配结果
                                       #  第一列:记录簇索引值,第二列:存储误差,欧式距离的平方
    centroids = createCent(dataSet, k)  # 创建k个随机质心
    clusterChanged = True
    while clusterChanged:  # 迭代使用while循环来实现
        clusterChanged = False  
        for i in range(m):  # 遍历每个数据点,找到距离每个点最近的质心
            minDist = inf; minIndex = -1
            for j in range(k):  # 寻找最近的质心
                distJI = distMeas(centroids[j,:],dataSet[i,:])
                if distJI < minDist:
                    minDist = distJI; minIndex = j
            if clusterAssment[i,0] != minIndex: # 更新停止的条件
                clusterChanged = True
            clusterAssment[i,:] = minIndex,minDist**2 # minDist**2就去掉了根号         
        for cent in range(k):  # 更新质心的位置
            ptsInClust = dataSet[nonzero(clusterAssment[:,0].A==cent)[0]] 
            centroids[cent,:] = mean(ptsInClust, axis=0) # 然后计算均值,axis=0:沿列方向 
    print 'centroids:',centroids
    return centroids, clusterAssment # 返回簇和每个簇的误差值,误差值是当前点到该簇的质心的距离

# 二分k--均值聚类算法
def biKmeans(dataSet, k, distMeas=distEclud):
    m = shape(dataSet)[0] 
    clusterAssment = mat(zeros((m,2))) # 存储数据集中每个点的簇分配结果及平方误差
    centroid0 = mean(dataSet, axis=0).tolist()[0] # 计算整个数据集的质心:1*2的向量
    centList =[centroid0] # []的意思是使用一个列表保存所有的质心,簇列表,[]的作用很大
    for j in range(m):  # 遍历所有的数据点,计算到初始质心的误差值,存储在第1列
        clusterAssment[j,1] = distMeas(mat(centroid0), dataSet[j,:])**2
    while (len(centList) < k):  # 不断对簇进行划分,直到k
        lowestSSE = inf  # 初始化SSE为无穷大
        for i in range(len(centList)): # 遍历每一个簇
            print 'i:',i               # 数组过滤得到所有的类别簇等于i的数据集
            ptsInCurrCluster = dataSet[nonzero(clusterAssment[:,0].A==i)[0],:]
            # 得到2个簇和每个簇的误差,centroidMat:簇矩阵  splitClustAss:[索引值,误差]
            centroidMat, splitClustAss = kMeans(ptsInCurrCluster, 2, distMeas) # centroidMat是矩阵
            sseSplit = sum(splitClustAss[:,1])  # 求二分k划分后所有数据点的误差和     
                                             # 数组过滤得到整个数据点集的簇中不等于i的点集
            print nonzero(clusterAssment[:,0].A!=i)[0]
            sseNotSplit = sum(clusterAssment[nonzero(clusterAssment[:,0].A!=i)[0],1])# 所有剩余数据集的误差之和
            print "sseSplit and notSplit: ",sseSplit,',',sseNotSplit
            if (sseSplit + sseNotSplit) < lowestSSE: # 划分后的误差和小于当前的误差,本次划分被保存
                print 'here..........'
                bestCentToSplit = i  # i代表簇数
                bestNewCents = centroidMat  # 保存簇矩阵
                print 'bestNewCents',bestNewCents
                bestClustAss = splitClustAss.copy() # 拷贝所有数据点的簇索引和误差
                lowestSSE = sseSplit + sseNotSplit  # 保存当前误差和
        # centList是原划分的簇向量,bestCentToSplit是i值
        print 'len(centList) and  bestCentToSplit ',len(centList),',',bestCentToSplit
                  # 数组过滤得到的是新划分的簇类别是1的数据集的类别簇重新划为新的类别值为最大的类别数
        bestClustAss[nonzero(bestClustAss[:,0].A == 1)[0],0] = len(centList) 
                  # 数组过滤得到的是新划分的簇类别是0的数据集的类别簇重新划为新的类别值为i
        bestClustAss[nonzero(bestClustAss[:,0].A == 0)[0],0] = bestCentToSplit
        print 'the bestCentToSplit is: ',bestCentToSplit   # 代表的是划分的簇个数-1
        print 'the len of bestClustAss is: ', len(bestClustAss) # 数据簇的数据点个数
                                   # 新划分簇矩阵的第0簇向量新增到当前的簇列表中
        centList[bestCentToSplit] = bestNewCents[0,:].tolist()[0] 
        print 'centList[bestCentToSplit]:',centList[bestCentToSplit]
                        # 新划分簇矩阵的第1簇向量添加到当前的簇列表中
        centList.append(bestNewCents[1,:].tolist()[0]) # centList是列表的格式
        print 'centList',centList
                    # 数组过滤得到所有数据集中簇类别是新簇的数据点
        clusterAssment[nonzero(clusterAssment[:,0].A == bestCentToSplit)[0],:]= bestClustAss
    return mat(centList), clusterAssment # 返回质心列表和簇分配结果


# 主函数
datMat=mat(loadDataSet('testSet.txt'))
centList,myNewAssments=biKmeans(datMat, 3)

运行结果:

i: 0
centroids: [[-1.12630774  1.13042276]
 [ 2.59258145 -2.78274655]]
[]
sseSplit and notSplit:  1000.74868136 , 0.0
here..........
bestNewCents [[-1.12630774  1.13042276]
 [ 2.59258145 -2.78274655]]
len(centList) and  bestCentToSplit  1 , 0
the bestCentToSplit is:  0
the len of bestClustAss is:  80
centList[bestCentToSplit]: [-1.1263077413793101, 1.13042275862069]
centList [[-1.1263077413793101, 1.13042275862069], [2.592581454545454, -2.782746545454545]]
i: 0
centroids: [[ 1.88660209  3.23434291]
 [-3.10621991 -0.25215334]]
[ 2  6 10 ..., 72 74 78]
sseSplit and notSplit:  390.512447704 , 95.5368926046
here..........
bestNewCents [[ 1.88660209  3.23434291]
 [-3.10621991 -0.25215334]]
i: 1
centroids: [[ 4.5110462  -1.0349174 ]
 [ 2.02832712 -3.29681394]]
[ 0  1  3 ..., 76 77 79]
sseSplit and notSplit:  51.9548039494 , 905.211788759
len(centList) and  bestCentToSplit  2 , 0
the bestCentToSplit is:  0
the len of bestClustAss is:  58
centList[bestCentToSplit]: [1.8866020869565217, 3.2343429130434784]
centList [[1.8866020869565217, 3.2343429130434784], [2.592581454545454, -2.782746545454545], [-3.1062199142857145, -0.2521533428571429]]

可以看出算法运行的中间过程,其中最容易迷惑的地方就是数组过滤器。可参考:
tolist()的用法
nonzero()

要注意的几点:

(1)centList =[centroid0] # []的意思是使用一个列表保存所有的质心,簇列表,[]的作用很大

In [12]: mean(datMat, axis=0).tolist()[0]
Out[12]: [-0.10361321250000004, 0.05430119999999998]

In [13]: centroid0=mean(datMat, axis=0).tolist()[0]

In [14]: centList =[centroid0]

In [15]: centList
Out[15]: [[-0.10361321250000004, 0.05430119999999998]]

(2)dataSet[nonzero(clusterAssment[:,0].A==i)[0],:]

>>> from numpy import *
>>> clusterAssment = mat(zeros((5,2)))
>>> clusterAssment[:,0].A==0
array([[ True],
       [ True],
       [ True],
       [ True],
       [ True]], dtype=bool)
>>> clusterAssment[:,0]==0
matrix([[ True],
        [ True],
        [ True],
        [ True],
        [ True]], dtype=bool)
>>> clusterAssment[:,0].A==1
array([[False],
       [False],
       [False],
       [False],
       [False]], dtype=bool)
>>> clusterAssment
matrix([[ 0.,  0.],
        [ 0.,  0.],
        [ 0.,  0.],
        [ 0.,  0.],
        [ 0.,  0.]])
>>> mm=transpose(nonzero(clusterAssment[:,0]==0))
>>> mm
array([[0, 0],
       [1, 0],
       [2, 0],
       [3, 0],
       [4, 0]], dtype=int64)
>>> nonzero(clusterAssment[:,0].A==0)[0]
array([0, 1, 2, 3, 4], dtype=int64)
>>> transpose(nonzero(clusterAssment[:,0].A==0))
array([[0, 0],
       [1, 0],
       [2, 0],
       [3, 0],
       [4, 0]], dtype=int64)
>>> nonzero(clusterAssment[:,0].A==0)
(array([0, 1, 2, 3, 4], dtype=int64), array([0, 0, 0, 0, 0], dtype=int64))
>>> dataSet=mat([[1,2],[2,3],[3,4],[4,5],[5,6]])
>>> dataSet[nonzero(clusterAssment[:,0].A==0)[0],:]
matrix([[1, 2],
        [2, 3],
        [3, 4],
        [4, 5],
        [5, 6]])
>>> 

(3)bestNewCents[0,:].tolist()[0]

In [17]:a=mat([[1,2],[2,3]])

In [18]:a
Out[18]: 
matrix([[1, 2],
        [2, 3]])

In [19]:a[0,:]
Out[19]: matrix([[1, 2]])

In [20]:a[0,:].tolist()
Out[20]: [[1, 2]]

In [21]:a[0,:].tolist()[0]
Out[21]: [1, 2]
  • 2
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值