数据分析工具Polars实现CSV读写、排序、应用函数、lazy API

本文介绍了Polars,一个使用Rust编写的快速数据处理库,支持Arrow列存储和并行计算,比Pandas更快。适用于中、小型数据处理,对于大型数据推荐使用Spark。讲解了安装、DataFrame操作、LazyFrame优化以及基本功能如读写CSV、排序、过滤等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

polars使用rust实现,内部使用arrow列存储格式,支持并行数据处理,比pandas快,分两种模式eager和lazy。
适合中、小型数据处理,大型数据建议用Spark。

安装

pip install polars

DataFrame

读取CSV

读取CSV并设置列名。

import polars as pl

# 读取CSV文件,返回DataFrame
df = pl.read_csv('data.csv', new_columns=["index", "id", "url"])

查看前5条

# 提取前5条
print(df.head(5))

排序

# 排序
print(df.sort("url", descending=True).head(5))

查看列、行

# 查看列名
print(df.columns)

# 所有行
print(df.rows())

行列数

# 行列数
print(df.shape)

查看数据类型

# 查看数据类型
print(df.dtypes)

空行数

# 空行数
print(df.null_count())

过滤

# 过滤
print(df.filter(pl.col("index") == 1153))

保存CSV

df.write_csv("1.csv")

LazyFrame

使用Lazy接口可以优化查询,超过内存的数据量、提取发现类型错误。

import polars as pl

# 新建LazyFrame
lf = pl.scan_csv("data.csv", new_columns=["index", "id", "url"])

df = (lf.filter(pl.col("id") != 0)  # 过滤数据
      .map_batches(lambda x: x, streamable=True)  # 应用函数,参数是dataframe类型
      .collect(streaming=True))  # 执行
print(df.head())  # 查看结果

参考

官网
https://github.com/pola-rs/polars

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小龙在山东

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值