《投资买房策略》项目分析报告

项目工作思路整体项目的工作思路包括观察数据、清洗&转换数据、建立模型&预测这三大模块。 观察数据、清洗及转换数据是实施项目的大前提,主要包括以下操作:

2017-11-15 17:51:08

阅读数 461

评论数 2

机器学习笔记-模型评估与选择, Training set、Validation set 和 Testing set的区别与作用

在自学机器学习的过程中,如果不系统的看一本好的参考书,形成整体的知识框架,很容易在某一个环节停滞不前。 例如:Validation set 的作用是什么?它与 Testing set的区别是什么? 在不同的参考书、博客里关于这部分阐述的重点不一致,本文就结合各大牛的知识心得,尝试梳理一下这一块的内...

2017-09-29 06:23:40

阅读数 2319

评论数 0

机器学习笔记-集成学习之Bagging,Boosting,随机森林三者特性对比

集成学习的概念 集成学习通过构建并结合多个学习器来完成学习任务。只包含同种类型的个体学习器,这样的集成是“同质”的,例如都是神经网络或者决策树;包含不同类型的个体学习器,这样的集成是“异质”的,例如同时包括神经网络和决策树。集成学习通过将多个学习器进行结合,常可获得比单一学习器显著优越的泛化性能...

2017-09-26 15:57:01

阅读数 3136

评论数 0

MySQL操作语法整理

MySQL操作语法整理

2017-09-19 22:10:20

阅读数 261

评论数 0

机器学习笔记-神经网络中激活函数(activation function)对比--Sigmoid、ReLu,tanh

为什么激活函数是非线性的? 如果不用激励函数(相当于激励函数是f(x)=x),在这种情况下,每一层的输出都是上一层的线性函数,无论神经网络有多少层,输出都是输入的线性组合,这与一个隐藏层的效果相当(这种情况就是多层感知机MPL)。 但当我们需要进行深度神经网络训练(多个隐藏层)的时候,如果激活函数...

2017-09-03 14:53:15

阅读数 8297

评论数 0

机器学习笔记-第四章 神经网络

本文为斯坦福大学吴恩达教授的《机器学习》视频课程第四章主要知识点,参考书籍《Python数据分析与挖掘实战》、《机器学习》 前面的章节学习了线性回归和逻辑算法,实际上很多复杂的非线性分类器都依赖于神经网络算法。 当特征值的个数过多时,多元回归方程的高阶多项式的个数将以几何倍数增加,特征空间将...

2017-09-02 15:49:14

阅读数 356

评论数 0

机器学习笔记:tensorflow实现卷积神经网络经典案例--识别手写数字

从识别手写数字的案例开始认识神经网络,并了解如何在tensorflow中一步步建立卷积神经网络

2017-08-31 09:30:43

阅读数 798

评论数 0

爬虫:用Python爬取招聘职位信息&职位需求分析

用Python爬取智联招聘网站“数据分析”相关岗位信息# _*_ coding: utf-8 _*_ from bs4 import BeautifulSoup import requests import csv import json import pandas as pd import nu...

2017-07-26 09:25:21

阅读数 2566

评论数 1

机器学习笔记-第三章 逻辑回归

本文为斯坦福大学吴恩达教授的《机器学习》视频课程第三章主要知识点。 分类问题举例 邮件:垃圾邮件/非垃圾邮件? 在线交易:是否欺诈(是/否)? 肿瘤:恶性/良性?   以上问题可以称之为二分类问题,可以用如下形式定义: 其中0称之为负例,1称之为正例。 当y值只有1...

2017-07-09 17:24:19

阅读数 309

评论数 0

机器学习笔记-第二章 多变量线性回归

本文为斯坦福大学吴恩达教授的《机器学习》视频课程第二章主要知识点 多元线性回归方程: 其中,X1到Xn是多个特征向量   回归方程用向量可以表示成: 其中,假设X0为1,这样方便X与θ的配对计算 梯度下降方法: 想要使用一个线性方程来拟合数据集,当数据集是N元的时候,则需要选...

2017-07-01 21:04:53

阅读数 306

评论数 0

机器学习笔记-第一章 单变量线性回归

作为机器学习的新手,斯坦福大学吴恩达教授的《机器学习》视频课程的确很能吸引入门者的兴趣,各个概念讲解的深入浅出。谨以此系列博客记录每一章最核心的知识点。第一章机器学习定义:在计算机上从数据中产生“模型”的算法,有了学习算法,我们把经验数据提供给它,它就能基于这些数据产生模型,在面对新的情况时,模型...

2017-07-01 21:01:27

阅读数 284

评论数 0

Python数据挖掘学习笔记-决策树分类

1、决策树算法原理&主要流程框架决策树方法在分类、决策、规则提取等领域有着广泛的应用。决策树是一种树状结构,其中包含三种节点: 根节点:没有入边,但有零条或多条出边。 内部节点:恰有一条入边和两条或多条出边。 叶节点:恰有一条入边,但没有出边。 也就是说每一个叶节点对应着一个分类,非叶节点...

2017-06-18 20:32:51

阅读数 1264

评论数 0

机器学习笔记-聚类分析之K-means算法案例及其Python实现

引言: 数据挖掘的本质是“计算机根据已有的数据做出决策”,其对社会的价值不必多言,相关的应用已经有很多,包括垃圾邮件拦截、客户价值分析等。 尽管数据挖掘实现过程的细节千差万别,但是从思路来说,主要包括两个方面:1、创建数据集;2、建模调整算法。 算法是数据挖掘最核心的部分,作为一...

2017-06-10 17:46:30

阅读数 20416

评论数 24

Python编程中“if _name_=='_main_':"语句的作用和原理

大多数编排的较好的脚本或程序里面都会有 "if _name_=='_main_':"这段,它的作用是什么呢? 首先,我们来看_name_是什么。 在python中,每个模块都有一个叫_name_的内置变量,这个变量的值会根据该模块被使用的方式而变化:1、假设模块 A.py 在...

2017-04-11 11:08:52

阅读数 1695

评论数 0

朴素贝叶斯分类

朴素贝叶斯是应用较广的分类方法,比如病人分类、邮件分类等。一、下面举例说明:某医院诊断了6位病人,这时候又来了一位打喷嚏的建筑工人,请问他感冒的概率多大?根据贝叶斯公式可知: P(A|B) = P(B|A) P(A) / P(B) 即: P(感冒|打喷嚏&建筑工人) =P(打喷嚏&...

2017-03-26 22:43:29

阅读数 268

评论数 0

使用python处理csv文件

本文相当于自己的学习笔记,望各位大神不吝批评指正。用python处理csv文件的时候,会遇到很多细节问题,不注意的话很容易报错。下面将分模块进行讨论:1、导入csv文件# -*-coding:utf-8-*- #这是为了在能够识别IDE中输入的中文import pandas as pddf=pd....

2017-03-26 18:30:41

阅读数 560

评论数 0

提示
确定要删除当前文章?
取消 删除