Broadcast Hash Join 是 Spark SQL 中的一种优化机制,适用于处理小表和大表之间的关联操作。当其中一个表比较小,可以将其广播到每个执行节点,然后对大表进行分区并与广播表进行本地哈希连接。
间接说明
假设你有两张表:表A和表B。表A非常大,包含数百万条记录,而表B比较小,只有几千条记录。如果使用普通的Shuffle Hash Join,那么Spark需要将这两张表都进行分区,然后通过网络将数据进行Shuffle,最后再进行哈希连接。这种操作在处理大数据时会非常耗费资源,特别是网络带宽和磁盘I/O。
而如果使用Broadcast Hash Join,Spark会将表B(小表)广播到每一个执行节点。这样,每个节点可以直接在本地内存中完成表A(大表)和表B的哈希连接操作,无需通过网络进行数据交换。这样大大减少了Shuffle的开销,提升了查询的效率。
适用场景
- 当一张表足够小,可以被广播到每个节点。
- 适用于小表和大表连接的情况,其中小表可以完全加载到内存中。
关键点
- 广播的表:小表会被广播到每一个执行节点。
- 哈希连接:在每个执行节点,使用哈希算法在本地内存中进行连接操作。
- 减少Shuffle:避免了数据的分区和网络传输,提升了性能。
总的来说,Broadcast Hash Join 是一种优化策略,能够在特定场景下通过减少数据传输和分区操作,显著提高连接操作的性能。