broadcast hash join:是将其中一张小表广播分发到另一张大表所在的分区节点上,分别并发地与其上的分区记录进行hash join。broadcast适用于小表很小,可以直接广播的场景。
在执行上,主要可以分为以下两步:
-
broadcast阶段:将小表广播分发到大表所在的所有主机。分发方式可以有driver分发,或者采用p2p方式。
-
hash join阶段:在每个executor上执行单机版hash join,小表映射,大表试探;
需要注意的是,Spark中对于可以广播的小表,默认限制是10M以下。(参数是spark.sql.autoBroadcastJoinThreshold)
Shuffle Hash Join:当join的一张表很小的时候,使用broadcast hash join,无疑效率最高。但是随着小表逐渐变大,广播所需内存、带宽等资源必然就会太大,所以才会有默认10M的资源限制。
所以,当小表逐渐变大时,就需要采用另一种Hash Join来处理:Shuffle Hash Join。
Shuffle Hash Join按照join key进行分区,根据key相同必然分区相同的原理,将大表join分而治之,划分为小表的join,充分利用集群资源并行化执行。
在执行上,主要可以分为以下两步:
-
shuffle阶段:分别将两个表按照join key进行分区,将相同join key的记录重分布到同一节点,两张表的数据会被重分布到集群中所有节点。
-
hash join阶段:每个分区节点上的数据单独执行单机hash join算法。
sort merge join:两张大表之间进行join
-
shuffle阶段:将两张大表根据join key进行重新分区,两张表数据会分布到整个集群,以便分布式并行处理
-
sort阶段:对单个分区节点的两表数据,分别进行排序
-
merge阶段:对排好序的两张分区表数据执行join操作。join操作很简单,分别遍历两个有序序列,碰到相同join key就merge输出,否则继续取更小一边的key