马尔可夫链

1.马氏性:未来的状态值只与当前状态有关,与前面的状态无关,具体为:


2.时变性:就是指转移概率仅仅与时间间隔宽度有关,和时间始点终点无关。

p (m) ij 为系统由状态i 经过m 个时间间隔(或

m 步)转移到状态j 的转移概率。


例:某计算机机房的一台计算机经常出故障,研究者每隔15 分钟观察一次计算
机的运行状态,收集了24 小时的数据(共作97 次观察)。用1 表示正常状态,用0 表
示不正常状态,所得的数据序列如下:
1110010011111110011110111111001111111110001101101

111011011010111101110111101111110011011111100111

我们把上面的数据放在一个TXT文本中,命名为‘data1.txt’则

clc,clear

format rat
fid=fopen('data1.txt','r');
a=[];
while (~feof(fid))
a=[a fgetl(fid)];%未到文件末尾,读一行再添加到a,a则变成了一个行向量
end
for i=0:1
for j=0:1
s=[int2str(i),int2str(j)];%s有00,01,10,11
f(i+1,j+1)=length(findstr(s,a));
end
end
fs=sum(f');
for i=1:2
f(i,:)=f(i,:)/fs(i);
end

f

可得结果:



分别为0->0,0->1,1->0,1->1的转移次数占比求近似的概率。

阅读更多

没有更多推荐了,返回首页