{\displaystyle G_{ij}=\langle v_{i},v_{j}\rangle }
内容为维基百科翻译过来,原文地址:https://en.wikipedia.org/wiki/Gramian_matrix
线性代数中,就是在内积空间中一组向量的集合,可写成。
应用:
1.计算线性独立性:当且仅当Gram行列式(Gram矩阵的行列式)非零时,一组向量是线性无关的。
2.在机器学习中,内核函数通常表示为格拉姆矩阵。
行列式:
在几何上,格拉姆行列式是矢量形成的平行体的体积的平方。 特别是,当且仅当格拉姆行列式非零(当且仅当格拉姆矩阵是非奇异的)时,向量才是线性无关的。
Gram行列式也可以用矢量的外积表示
综上:Gram矩阵既体现了自己的特征,有体现了和维度之间的关系。
因为维度经过相乘之后也可以体现出来。