Gram 矩阵


{\displaystyle G_{ij}=\langle v_{i},v_{j}\rangle }

内容为维基百科翻译过来,原文地址:https://en.wikipedia.org/wiki/Gramian_matrix


线性代数中,就是在内积空间中一组向量的集合,可写成G_{ij}=\langle v_{i},v_{j}\rangle

应用:

1.计算线性独立性:当且仅当Gram行列式(Gram矩阵的行列式)非零时,一组向量是线性无关的。

2.在机器学习中,内核函数通常表示为格拉姆矩阵。

行列式:


在几何上,格拉姆行列式是矢量形成的平行体的体积的平方。 特别是,当且仅当格拉姆行列式非零(当且仅当格拉姆矩阵是非奇异的)时,向量才是线性无关的。

Gram行列式也可以用矢量的外积表示

综上:Gram矩阵既体现了自己的特征,有体现了和维度之间的关系。

因为维度经过相乘之后也可以体现出来。



评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值