自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(7)
  • 收藏
  • 关注

原创 类型四:间断点及分类

一、y=x2−3x+2x2−1e1xy=\frac{x^2-3x+2}{x^2-1}e^{\frac1x}y=x2−1x2−3x+2​ex1​,求间断点解:x=−1,0,1x = -1, 0, 1x=−1,0,1为间断点lim⁡x→−1f(x)=∞  ⟹  x=−1为第二类间断点\lim_{x \to -1}f(x)=\infty \implies x = -1为第二类间断点limx→−1​f(x)=∞⟹x=−1为第二类间断点f(0−0)=0;f(0+0)=−∞  ⟹  x=0为第二类间断点f(0-

2022-01-13 15:40:35 511

原创 连续与间断

连续1.在某一点处连续:f(x)在x=a的邻域内有定义f(x)在x=a的邻域内有定义f(x)在x=a的邻域内有定义如果lim⁡x→af(x)=f(a)\lim_{x \to a}f(x)=f(a)limx→a​f(x)=f(a),可称f(x)f(x)f(x)在x=ax=ax=a处连续注意:f(x)f(x)f(x)在x=ax=ax=a处连续  ⟺  \iff⟺f(a−0)=f(a+0)=f(a)f(a-0)=f(a+0)=f(a)f(a−0)=f(a+0)=f(a)2.f(x)f(x)f(x)在[a,

2022-01-13 11:33:31 683

原创 极限类型三

不定型00\frac{0}{0}00​方法:等价无穷小洛必达法则麦克劳林公式习惯u(x)v(x)  ⟹  ev(x)lnu(x)u(x)^{v(x)} \implies \quad e^{v(x)lnu(x)}u(x)v(x)⟹ev(x)lnu(x)ln(...)  ⟹  (联想)ln(1+Δ)ln(...) \implies(联想)\quad ln(1+\Delta)ln(...)⟹(联想)ln(1+Δ)(...)−1  ⟹  (...) - 1 \implies(...)−1⟹

2022-01-12 20:27:04 842

原创 极限类型二

0<a1<π,an+1=sinan0 \lt a_1 \lt \pi,a_n+_1=sina_n0<a1​<π,an​+1​=sinan​,求证lim⁡n→∞an ∃\lim_{n \to \infty} a_n\space\existslimn→∞​an​ ∃,并求出证:∵0<a1<π0 \lt a_1 \lt \pi0<a1​<π,∴a2∈(0,1)⊂(0,π2)a_2\in(0,1)\subset(0,\frac{\pi}{2})

2022-01-12 11:45:03 907

原创 关于高等数学参数方程二阶可导的公式推导

关于高等数学参数方程二阶可导的公式推导理解为在一阶导数的基础上,对x再次求导。个人理解:d(dy/dx)/dx整体可以看作先对t求导,再令t对x求导;而括号中的dy/dx则是g’(t)/f’(t);得出第一个等号后的式子。之后在算乘号左侧的部分时,视为对t的求导,且是除法形式的求导: 子导母不导-子不导母导 ------------------------------ 分母的平方(以上三行假装是分数形式……)之后的部分就很好理解,按部就班即可...

2020-08-14 20:50:31 36963 1

原创 SQL Server 2008安装时遇见的几个小问题

SQL Server 2008安装时遇见的几个小问题1.重新启动计算机2.句柄无效1.重新启动计算机遇见这个问题的时候,我第一反应,重启一下嘛,没多久,但是发现重启仍旧不可以,百度了一下,可以在注册表修改。分为两部分,第一,在注册表里定位到这个地方HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Microsoft SQL Server;然后将这个Microsof...

2019-11-02 15:42:34 653

转载 第一次写文章,好紧张

学习做一个Jscript和H5的二级菜单H5部分的代码介个亚子虽然说是很菜吧,但是好歹就算是自己记录一下学习的过程,而且不会的时候很难受,这样以后如果忘了自己也好歹算是有个记录。H5部分的代码介个亚子`<select id="first" name="PROVINCE" size="1" onChange="fun(this.value)"> <option valu...

2019-09-26 16:54:36 101

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除